

Applikation

DE Einbindung EKS mit PROFINET-Schnittstelle in BECKHOFF TwinCAT 3

Inhalt

1.	Zu di	esem Do	okument	3
	1.1.	Version		3
	1.2.	Gültigkei	t	3
	1.3.	Zielgrupp)e	3
	1.4.	Ergänzer	Ide Dokumente	3
	1.5.	Hinweis.		3
2.	Verw	endete E	Bauteile / Module	4
	2.1.	EUCHNE	R	4
	2.2.	Andere		4
	2.3.	Software		4
3.	Funk	tionsbes	chreibung	4
4.	Über	sicht der	, Kommunikationsdaten	5
	4.1.	Input		5
	4.2.	Output		5
5	Incto	llioron de	or CSD-Datoi	6
J.	iiiəta			
6.	Para	metrieru	ng der Steuerung	7
7.	Proje	ktierung	und Parametrierung des EKS mit PROFINET Schnittstelle	8
	7.1.	Projektie	rung des PROFINET-Netzwerks	8
	7.2.	Projektie	rung des EKS mit PROFINET Schnittstelle	9
	7.3.	Parametr	rierung des EKS	11
	7.4.	PROFINE	T-Gerätenamen dem EKS zuweisen	12
8.	Verw	enden de	er BECKHOFF Bibliothek	14
	8.1.	Installatio	on der Bibliothek	14
	8.2.	Aufruf de	r Bibliothek und Beschreibung der Bausteinschnittstelle	16
		8.2.1. 8.2.2	Aufruf der Bibliothek Beschreibung der Bausteinschnittstellen	
		8.2.3.	Volständiger Aufruf der EKS Datentypen	
9.	Verli	nkung de	es Eingangs- und Ausgangsbereich vom EKS	19
10.	Schli	isseldate	en lesen und schreiben	21
	10.1.	Program	m an die SPS übertragen	21
	10.2.	Inhalt des	s Schlüsselspeichers mittels der Bausteinschnittstelle lesen	21
	10.3.	Inhalt des	s Schlüsselspeichers mittels der Bausteinschnittstelle schreiben	21
11.	Wich	tiger Hin	weis – Bitte unbedingt sorgfältig beachten!	22

1. Zu diesem Dokument

1.1. Version

Version	Datum	Änderung/Erweiterung	Kapitel
01-01/19	10.01.2019	Erstellung	Alle

1.2. Gültigkeit

Dieses Dokument dient zur Einbindung und Projektierung des EKS mit PROFINET-Schnittstelle (ab Geräteversion It. Tabelle) in das BECKHOFF TwinCAT 3.

Best. Nr.	Bezeichnung	Geräteversion
106305	EKS-A-IIX-G01-ST02/03	V3.0.0
106306	EKS-A-IIXA-G01-ST02/03/04	V3.0.0
122352	EKS-A-AIX-G18	V1.X.X
122353	EKS-A-AIXA-G18	V1.X.X

1.3. Zielgruppe

Konstrukteure und Anlagenplaner für Sicherheitseinrichtungen an Maschinen, sowie Inbetriebnahme- und Servicefachkräfte, die über spezielle Kenntnisse im Umgang mit Sicherheitsbauteilen sowie über Kenntnisse bei der Installation, Inbetriebnahme, Programmierung und Diagnose von speicherprogrammierbaren Steuerungen (SPS) und Bussystemen verfügen.

1.4. Ergänzende Dokumente

Die Gesamtdokumentation für diese Applikation besteht aus folgenden Dokumenten:

Dokumenttitel (Dokumentnummer)	Inhalt	
Handbuch (2516210)	Electronic-Key-System Handbuch EKS und EKS FSA mit PROFINET IO-Schnittstelle	www
Ggf. beiliegende Daten- blätter	Artikelspezifische Information zu Abweichungen oder Ergänzungen	

1.5. Hinweis

Diese Applikation basiert auf dem Handbuch des EKS mit PROFINET-Schnittstelle. Die technischen Details sowie weitere Informationen entnehmen Sie bitte dem Handbuch. Im weiteren Verlauf des Dokuments wird das EKS mit PROFINET-Schnittstelle kurz "EKS" genannt.

2. Verwendete Bauteile / Module

2.1. EUCHNER

Beschreibung	Bestellnummer / Artikel
EKS mit PROFINET-Schnittstelle	106305 / EKS-A-IIX-G01-ST02/03

TIPP!

Weitere Informationen und Downloads zu den o.g. EUCHNER-Produkten finden Sie unter <u>www.euchner.de</u>. Geben Sie einfach die Bestellnummer in die Suche ein.

2.2. Andere

Beschreibung	Bestellnummer / Artikel
CX9020-0110-M930	СХ9020-0110-М930

2.3. Software

Beschreibung	Version
Microsoft Visual Studio 2013 Shell (Integrated)	Version 12.0.21005.1 REL
Microsoft .NET Framework	Version 4.7.03056
TcMeasurement	1.0
TcProjectCompare	1.0.0.9
TcTargetBrowserPackage Extension	1.0
TcXaeDebuggerLiveWatch	1.0
TcXaeHelper	1.0
TcXaeModules	1.0
TwinCAT XAE Base	3.1.0.0
TwinCAT XAE EventLogger	1.0
TwinCAT XAE PLC	3.1.0.0

3. Funktionsbeschreibung

Bei den EKS PROFINET Geräten handelt es sich um ein Schreib-/Lesesystem mit Elektronik für die induktive bi-direktionale Schnittstelle zum Transponder und der Schnittstellenelektronik.

Die System-Anbindung erfolgt über die integrierte PROFINET-Schnittstelle, welche als RJ45-Buchse ausgeführt ist. Zur PROFINET-Anbindung wird ggf. ein separater Switch benötigt. Das EKS besitzt keinen integrierten Switch.

Der aktuelle Zustand der Schlüsselaufnahme wird über eine 3-farbige LED angezeigt.

Der Schlüssel wird für den Betrieb an der Schlüsselaufnahme platziert. Die Stromversorgung für den Transponder und die Daten werden kontaktlos zwischen Schlüsselaufnahme und Schlüssel übertragen.

4. Übersicht der Kommunikationsdaten

4.1. Input

PROFINET	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
Byte 0 (Status-Byte)	Auftrag in Bearbeitung	Auftrag beendet	-	-	-	-	Schlüssel erkannt	Gerät betriebsbereit
PROFINET		Beschreibung				Funktion		
Byte 1								
	1			May 124 Didea Nut	-datan aya dana Ca	blüssel alus 2 Dute	a Deserve Mann in	den Dueieldiemung
		Empfangsdaten		weniger Daten gewäl	zdaten aus dem Sc hlt wurden, werden	diese mit 0 hex auf	gefüllt.	der Projektierung
· .					,		8	
Byte 127								

4.2. Output

PROFINET	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0 (Kommando- Byte)	-	-	-	-	-	-	-	Schlüssel beschreiben

PROFINET	Beschreibung	Funktion
Byte 1	Start-Adresse	Definiert erstes Byte im Speicherbereich des Schlüssels, das mit Setzen des Bit Nr. 0 im Kommando- Byte geschrieben wird. Start-Adresse Nutzdaten: Byte Nr. 0, 4, 8 112.
Byte 2	Anzahl Bytes	Definiert Anzahl der Bytes im Speicherbereich des Schlüssels, die mit Setzen des Bit Nr. 0 im Kommando-Byte geschrieben werden. Anzahl Nutzdaten: 4, 8, 12 116 Bytes.
Byte 3	Nicht verwendet	
Byte 4		
	Sendedaten	Wird im Kommando-Byte Bit Nr. 0 auf 1 gesetzt, wird der Inhalt dieser Bytes ab der definierten Start-Adresse auf den Schlüssel geschrieben.
Byte 119		
Byte 120		
	Nicht verwendet	
Byte 127		

(\mathbf{i})	TIPP!
\bigcirc	Weitere Informationen finden Sie im Handbuch.
	HINWEIS!

Beim Schreib-/Lese-Schlüssel mit frei programmierbaren 116 Bytes ist der Speicher in 4-Byte-Blöcken organisiert. Dies bedeutet, die Start-Adresse muss beim Schreiben im Bereich Byte Nr. 0 bis Byte Nr. 112, immer in 4-Byte-Schritten, angegeben werden (Byte Nr. 0, 4, 8 112). Außerdem muss immer in einem Vielfachen von 4-Bytes großen Blöcken geschrieben werden (4, 8, 12 116 Bytes).
Beim Lesen kann byteweise auf den Speicher zugegriffen werden, ohne die oben genannte Einschrän-

DE

kung beim Schreiben.

 (\mathbf{i})

5. Installieren der GSD-Datei

Um das EKS in das TwinCAT 3 einzubinden, benötigen Sie abhängig von der Bauform des EKS, die entsprechende GSD-Datei im GSDML-Format:

Bauform	Zugehörige GSD-Datei
kompakt (Best-Nr. 106305/106306)	GSDML-V2.31-Euchner-EKS_3.x.x_109539-YYYYMMDD.xml
modular (Best-Nr. 122352/122353)	GSDML-V2.31-EUCHNER-EKS_PN_modular_126145-YYYYMMDD.xml

Die GSD-Dateien finden Sie auf <u>www.euchner.de</u> im Downloadbereich. Verwenden Sie immer die neueste GSD-Datei.

Zum Einbinden der GSD-Datei in TwinCAT 3 gehen Sie bitte wie folgt vor:

Öffnen Sie den Pfad, wie im Bild 1 zu sehen, und fügen Sie anschließend die entpackte GSDML- und Bitmap-Datei ein.

← → × ↑ 📕 >	This PC \rightarrow Local Disk (C:) \rightarrow TwinCAT \rightarrow 3.1 \rightarrow Config \rightarrow Io \rightarrow Profinet 1.	
1 O. ishaanaa	Name	Date modified
Culck access	GSDML-0135-0201-EKS_PN.bmp	06/11/2018 11:33
la OneDrive	GSDML-V2.31-Euchner-EKS_3.x.x_109539-20180628.xml	06/11/2018 11:33

Bild 1: Einfügen GSD-Datei

6. Parametrierung der Steuerung

Legen Sie die Zykluszeit der PlcTask fest. Stellen Sie hierfür den Wert 2 ein.

Bild 2: Parametrierung der Steuerung

7. Projektierung und Parametrierung des EKS mit PROFINET Schnittstelle

7.1. Projektierung des PROFINET-Netzwerks

Fügen Sie das PROFINET-Netzwerk wie folgt ein:

1. Klicken Sie im Solution Explorer unter I/O, rechter Mausklick auf Devices, Scan.

Bild 3: Einfügen PROFINET-Netzwerk

HINWEIS!

Um Scans durchzuführen, muss das TwinCAT im Config Mode sein.

2. Wählen Sie den PROFINET Controller aus und bestätigen Sie mit OK.

4 new I/O devices found	×
Device 1 (Profinet Controller CCAT (RT)) Device 2 (EtherCAT) Device 3 (EtherCAT Automation Protocol) [FEC1] Device 5 (NOV-DP-RAM)	OK Cancel
	Select All Unselect All

Bild 4: Auswahl PROFINET Controller

3. Anschließend werden Sie gefragt, ob nach weiteren Boxen (Geräten) gesucht werden soll. Bitte verneinen Sie diese Abfrage, da nicht gewährleistet werden kann, dass das richtige EKS projektiert wird.

Bild 5: Nach Geräten suchen ablehnen

7.2. Projektierung des EKS mit PROFINET Schnittstelle

4. Klicken Sie mit der rechten Maustaste auf den PROFINET Controller und anschließend auf Add New Item...

Bild 6: Hinzufügen eines Geräts

5. Wählen Sie die entsprechende GSDML-Datei aus.

Туре:		Ok Cancel
	 Miscellaneous PROFIdrive MC (DPV2 / PNIO) 	Multiple:
Name:	Box 1	

Bild 7: Auswahl der GSDML-Datei

6. Wählen Sie das entsprechende EKS aus.

Module DAP:	s	ОК
<u>T</u> ype:	EKS-A-IIXA-G01-ST02/03/04 EKS-A-IIX-G01-ST02/03	d.
<u>C</u> omment:	VendorName: Euchner GmbH + Co. KG, OrderNumber: 106305,	
	EKS PN	

Bild 8: Auswahl des EKS

7.3. Parametrierung des EKS

Folgende PROFINET-Parameter müssen eingestellt werden:

- · Gerätename (Werkseinstellung aus GSD-Datei): [eks-pn].
- IP-Adresse: fest

Solution Explorer 🛛 👻 🕂 🗙	EKS_Library_Integration 😕 🗙 Library Manager MAIN Output
00 <u>0</u> 0-0 <i>P</i> -	General Device Diagnosis Features ADS Shared Device
Search Solution Explorer (Ctrl+;)	Adapter Properties Stationname
EKS_LIDFAry_Integration G SYSTEM MOTION MOTION	Vendorld DeviceId HW Version SW Version 0x0135 0x0202 0.00 T 0.00
SAFETY C++	IP configuration
 Devices Bevice 1 (Profinet Controller CCAT (RT)) Image 	Subnet 255 255 0
Inputs Outputs Outputs	Gateway 192 168 0 52 Refresh GSDML
Mappings	ID FrameId 0x8000
	MaxLengthIn MaxLengthOut ActLengthIn ActLengthOut 1440 Byte 133 Byte 133 Byte

Bild 9: PROFINET-Parameter

Echtzeit-Einstellungen IO-Zyklus

Diese Werte sind bereits auf empfohlene Standardwerte gesetzt.

Bild 10: PROFINET Echtzeiteinstellungen

7.4. PROFINET-Gerätenamen dem EKS zuweisen

Es gibt zwei Möglichkeiten dem EKS einen Gerätenamen zu zuweisen. Entweder über den Webbrowser des EKS (s. Handbuch) oder über das TwinCAT. Nachfolgend zeigen wir die Namensvergabe über TwinCAT.

1. Um dem EKS den Namen über TwinCAT zu vergeben, klicken Sie bitte mit der rechten Maustaste auf den PROFINET-Controller und anschließend auf Scan.

Bild 11: Suche nach Online vorhandenen Geräten

2. Wählen Sie das EKS aus der Auflistung aus. Geben Sie in *Stationname* den Gerätenamen ein und bestätigen Sie mit *Set Stationname*.

itationname eks-pn
itationname eks-pn
itationname eks-pn configuration IP address

Bild 12: Gerätename zuweisen

8. Verwenden der BECKHOFF Bibliothek

Die Bibliothek soll Sie bei der Programmierung unterstützen. Mit der Bibliothek werden Ihnen bereits aufbereitete Daten zur Verfügung gestellt, die dann weiter verarbeitet werden können.

Gehen Sie zu den Applikationen des EKS im Downloadbereich auf <u>www.euchner.de</u> und laden Sie die Bibliothek des EKS.

8.1. Installation der Bibliothek

- 1. Klicken Sie auf den Reiter *PLC* und öffnen Sie die *Library Repository*.
- 2. Installieren Sie die Bibliothek und wählen Sie den Pfad aus unter dem Sie die Bibliothek gespeichert haben.

ocation:	System	~	Edit Locations
	(C:\TwinCAT\3.1\Components\Plc\Managed Librarie	25)	
Instal <mark>led li</mark> br	aries:		Install
Company:	(All companies)	~	Uninstall
	lication	^	
• • • • • • • • • • • • • • • • •	nmunication troller aAccess ern h surement tion	~	Find Details
Group I	y category		Dependencies

Bild 13: Bibliothek installieren

(\mathbf{i})	HINWEIS!
\bigcirc	Sobald die Bibliothek installiert ist, wird sie unter (Miscellaneous) angezeigt.

3. Als nächstes muss die Bibliothek dem Projekt hinzugefügt werden. Klicken Sie im Solution Explorer mit der rechten Maustaste auf References und anschließend auf Add library.

- Bild 14: Bibliothek dem Projekt hinzufügen
- 4. Wählen Sie die von EUCHNER erstellte Bibliothek aus.

dd Library	>
Enter a string for a fulltext search in all libraries	
Library Library Application Application Application BuildingAutomation Communication Controller DataAccess DataAccess Intern Intern Application Application Application Application Application Application Application Application Application Application Application Application	Company
Library_EUCHNER_EKS_AP000240_01/19	EUCHNER GmbH + Co. KG
Advanced	OK Cancel

Bild 15: Auswahl der Bibliothek

8.2. Aufruf der Bibliothek und Beschreibung der Bausteinschnittstelle

8.2.1. Aufruf der Bibliothek

1. Um die Bibliothek verwenden zu können, müssen die Bausteine aus der Bibliothek im Hauptprogramm (MAIN) aufgerufen werden. Dazu öffnen Sie den Baustein und wählen den Programmierteil aus. Mit Hilfe des *Input Assistant*, zu öffnen durch die rechte Maustaste oder Taste F2, können die Bausteine ausgewählt werden.

	X					PROGR	AM MAIN
^	Scope	Name	Address	Data type	Initialization	n Comment	Attributes
4						A 7	
ŧ	55	Add to so Browse Ca	ope all Tree				
		Find All R	eferences	Shift	-F12		
	2	Input Assi	stant	F2	De		
		Auto Dec	lare				
	$h_{\rm c}$	Run To Cu	irsor	Ctrl+	-10		
		Display M	lode		•		
	ж	Cut		Ctrl+	×		
	ď	Сору		Ctrl+			
	ப	Paste		Ctrl+	V		
	\times	Delete		Del			
	×.	Select All		Ctrl+	Δ		

Bild 16: Öffnen des Input Assistant

2. Die Bibliothek ist unter dem Reiter *Categories* zu finden. Wählen Sie *Function Blocks* aus. Im rechten Fenster finden Sie die EUCHNER Bibliothek. Aus der Bibliothek können Sie zwei *Function Blocks* auswählen. *EKS_Read* wird benötigt, um die Schlüsseldaten zu lesen und *EKS_Write*, um Daten auf den Schlüssel zu schreiben.

Valiables	 Name 		Туре	Origin	
Module Calls	EKS_Library_Interpretered	egration	Application		
Instance Calls	EUCHNER	R_EKS_AP000240_	01_19 Library	Library_EUCHNE	
Function Blocks	🖻 🧰 POUs				
Keywords	H EKS_Rea	d	FUNCTION_BLOCK	Library_EUCHNE	
Conversion Operators	EKS_Writ	te	FUNCTION_BLOCK	Library_EUCHNE	
	*-{} Tc2_Standard		Library	Tc2_Standard, 3	
	Tc2_System		Library	Tc2_System, 3	
	Tc3_Module		Library	Tc3_Module, 3.3	
Structured view					
Structured view			⊡ Insert <u>w</u> ith arg	uments	Insert with <u>n</u> amespace pr
Structured view	d		⊡ Insert with arg	uments	Insert with namespace pr
] structured view sgumentation: UNCTION_BLOCK EKS_Rea Device_ready_for_operation	d BOOL	VAR_OUTPUT	⊡ Insert with arg After successful configuration th	uments ne device signals ti	Insert with namespace pr
] structured view soumentation: UNCTION_BLOCK EKS_Rea Device_ready_for_operation Electronic_Key_detected	d BOOL BOOL	VAR_OUTPUT VAR_OUTPUT	∑ Insert with arg After successful configuration th The detection of a valid Electron	uments ne device signals ti nic-Key is signaled	Insert with gamespace pr hat it is ready via bit no. 0. I using bit no. 1.
] structured view scumentation: UNCTION_BLOCK EKS_Rea Device_ready_for_operation Electronic_Key_detected Job_finished	d BOOL BOOL BOOL	VAR_OUTPUT VAR_OUTPUT VAR_OUTPUT	☑ Insert with arg After successful configuration th The detection of a valid Electron Bit no. 6 indicates that a write µ	uments ne device signals ti nic-Key is signaled process has been s	Insert with gamespace pr hat it is ready via bit no. 0. using bit no. 1. successfully finished.
] structured view squimentation: UNCTION_BLOCK EKS_Rea Device_ready_for_operation Electronic_Key_detected Job_finished Job_in_progress	d BOOL BOOL BOOL BOOL	VAR_OUTPUT VAR_OUTPUT VAR_OUTPUT VAR_OUTPUT	☐ Insert with arg After successful configuration th The detection of a valid Electroi Bit no. 6 indicates that a write f Bit no. 7 indicates that a write f	uments ne device signals th nic-Key is signaled process has been s process is currenth	Insert with gamespace pr hat it is ready via bit no. 0. using bit no. 1. successfully finished. y in progress.

Bild 17: Auswählen der Bausteine (Function Blocks)

3. Die Bausteine müssen instanziiert werden. In unserem Beispiel vergeben wir für den Datentyp *EKS_Read* den Namen *EKS_Read_01*. Anschließend können Sie diesen Vorgang (Schritt 1 bis 3) für den Datentyp *EKS_Write* wiederholen.

Scope:	<u>N</u> ame:	<u>T</u> ype:
VAR	V EKS_Read_01	EKS_Read >
Object:	Initialization:	Address:
MAIN [EKS_Library_Integration]	~	
<u>F</u> lags:	Comment:	
		0
PERSISTENT		

Bild 18: Deklarieren des Datentyps

4. Als nächstes muss das Programm übersetzt werden. Damit werden die Eingangs- und Ausgangsvariablen für das Projekt erzeugt, die später mit den Submodulen Lesen und Schreiben verlinkt werden müssen. Klicken Sie hierfür auf den Reiter *BUILD* und wählen Sie *Build Solution* aus oder verwenden Sie den Shortcut: Ctrl+Shift+B

Bild 19: Automatisch erzeugte Eingangs- und Ausgangsvariablen

8.2.2. Beschreibung der Bausteinschnittstellen

Parameter	Datentyp	Beschreibung
Device_ready_for_operation	BOOL	Nach erfolgreicher Konfiguration des Geräts wird betriebsbereit signalisiert.
Electronic_Key_detected	BOOL	Signalisierung, dass ein Schlüssel erkannt wird.
Job_finished	BOOL	Gibt Rückmeldung darüber, dass ein Schreibvorgang erfolgreich abgeschlossen wurde.
Job_in_progress	BOOL	Signalisiert, dass ein Schreibvorgang in Arbeit ist.
Receive_data	ARRAY [0123] OF BYTE	Schlüsseldaten

Tabelle 1: Bausteinschnittstelle Lesen

Parameter	Datentyp	Beschreibung
Write_Electronic_Key	BOOL	Durch Setzen des Bits wird der Schreibbefehl gegeben.
Start_address	BYTE	Definiert das erste zu schreibende Byte des Schlüsselspeichers.
Number_of_bytes	BYTE	Definiert die Anzahl der zu schreibenden Bytes des Schlüsselspeichers.
Transmit_data	ARRAY [0115] OF BYTE	Der Inhalt dieser Bytes werden auf den Schlüssel geschrieben.

Tabelle 2: Bausteinschnittstelle Schreiben

8.2.3. Vollständiger Aufruf der EKS Datentypen

1	4 4	1XI					PROGRAM M	AIN
	^ 1 2	Scope VAR VAR	Name EKS_Read_01 EKS_Write_01	Address	Data type EKS_Read EKS_Write	Initialization	Comment	Attributes
11	1	EKS_Rea	d_01(operation	=>	,	A V	
	1 2 3	EKS_Rea Dev Ele	d_01(ice_ready_for_ ctronic_Key_de	operation	=> ,		A V.	_
	1 2 3 4	EKS_Rea Dev Ele Job	d_01(ice_ready_for_ ctronic_Key_de _finished=> ,	operation tected=>	=> ,		A V.	
	1 2 3 4 5	EKS_Rea Dev Ele Job Job	d_01(ice_ready_for_ ctronic_Key_de _finished=> , _in_progress=>	operation tected=>	=> ,		<u>▲ ▼.</u>	_
4	1 2 3 4 5 6	EKS_Rea Dev Ele Job Rec	d_01(ice_ready_for_ ctronic_Key_de _finished=> , _in_progress=> eive_data=>);	operation tected=>	=> ,		A V.	
	1 2 3 4 5 6 7	EKS_Rea Dev Ele Job Rec	d_01(ice_ready_for_ ctronic_Key_de _finished=> , _in_progress=> eive_data=>);	operation tected=>	=> ,		▲ ♥	
	1 2 3 4 5 6 7 8	EKS_Rea Dev Ele Job Job Rec EKS_Wri	d_01(ice_ready_for_ ctronic_Key_de _finished=> , _in_progress=> eive_data=>); te_01(operation tected=>	=> ,		A V.	
	1 2 3 4 5 6 7 8 9	EKS_Rea Dev Ele Job Rec EKS_Wri Sta	<pre>d_01(ice_ready_for_ ctronic_Key_de _finished=> , _in_progress=> eive_data=>); te_01(te_Electronic_ rt_address:=</pre>	operation tected=> , Key:= ,	=> ,		A V.	
•	1 2 3 4 5 6 7 8 9 10 11	EKS_Rea Dev Ele Job Rec EKS_Wri Wri Sta Num	<pre>d_01(ice_ready_for_ ctronic_Key_de _finished=> , _in_progress=> eive_data=>); te_01(te_Electronic_ rt_address:= , ber of bytes:=</pre>	operation tected=> , Key:= ,	=> ,		A V.	

Bild 20: Vollständiger Aufruf in PROGRAM MAIN

9. Verlinkung des Eingangs- und Ausgangsbereichs vom EKS

Die Module Lesen (Inputs) und Schreiben (Outputs) müssen mit den in Kapitel 8.2.1 erzeugten Variablen verlinkt werden.

1. Öffnen Sie im Solution Explorer den Baum, wie nachfolgend zu sehen. Durch einen Doppelklick auf das Modul Lesen (*Inputs*) öffnen Sie die Eigenschaften.

Bild 21: Modul Lesen (Inputs) des EKS in der Hardwarekonfiguration

2. Klicken Sie In den Eigenschaften des Moduls Lesen (Inputs) auf die Schaltfläche Linked to....

Solution Explorer 🔹 🖣 🗙	EKS_Library_Integra	ation 🕈 🗙 MAIN	Output	
○ ○ ☆ [•] ○ - ⓓ <i>▶</i>	Variable Flags			
Search Solution Explorer (Ctrl+;)	Name:	Inputs		
 EKS_Library_Integration 	Туре:	ARRAY [0127] OF BYTE		
SYSTEM	Group:	Inputs	Size:	128.0
MOTION	Address:	4 (0x4)	User ID:	0
SAFETY	Linked to			
€ C++ ∠ Z I/O	Comment			^
 Devices We Device 1 (Profinet Controller CCAT (RT)) 				
Image				
 Inputs Outputs 				~
 ### eks-pn Inputs 	ADS Info:	Port: 11, IGrp: 0x3040010, IOffs	:: 0x80000004, Len:	128
Gutputs Get API Ferm 1 (DAP Module)	Full Name:	TIID^Device 1 (Profinet Contro	oller CCAT (RT))^e	eks-pn^API^Term 2 (Read: 128 by
 Term 2 (Read: 128 bytes) Subterm 1 (Read: 128 bytes) Inputs 				
👂 📌 Inputs	Town Link			
Outputs	Error List		1	
P Term 3 (Write: 128 bytes)	📕 🍸 🔻 🐼 0 Erro	rs 1 0 Warnings 🚺 :	28 Messages	Clear

Bild 22: Eigenschaften des Moduls Lesen (Inputs)

3. Wählen Sie die Eingangsvariable aus und klicken Sie auf OK. Führen Sie für die Verlinkung der Ausgangsvariablen die Schritte 1-3 nochmals für das Modul Schreiben (*Outputs*) durch, welches im *Solution Explorer* unter *Term 3* (*Writes: 128 bytes*) zu finden ist.

earch:	× Show Variables
PLC	Unused Used and unused Exclude disabled Exclude other Devices Exclude same Image Show Tooltips Sort by Address Show Variable Groups
	☐ Matching Type ✓ Matching Size ☐ All Types ☐ Array Mode Offsets
	Continuous Show Dialog Variable Name / Comment / Hand over / Take over

Bild 23: Hinzufügen der Eingangsvariable

10. Schlüsseldaten lesen und schreiben

10.1. Programm an die SPS übertragen

Übertragen Sie das Programm durch Klick auf Activate configuration 🔛 an die Steuerung.

10.2. Inhalt des Schlüsselspeichers mittels der Bausteinschnittstelle lesen

Nachfolgend wird mittels der Bausteinschnittstelle ein Auszug des Status-Bytes und ein Teil der Schlüsseldaten des Schlüsselspeichers gezeigt. Gehen Sie online in dem Sie auf *Login* $\boxed{21}$ klicken. Um die Schlüsseldaten auszulesen, muss lediglich ein Schlüssel in der Schlüsselaufnahme platziert werden. Die Schlüsseldaten werden zyklisch an die SPS übertragen.

MAIN [Online] 🕆 🗙 Output						
EKS_Library_Integration.EKS_Library_In	tegration.MAIN					
Expression	Туре	Value	Prepared value	Address	Comment	-
EKS_Read_01	EKS_Read					
Device_ready_for_operation	BOOL	TRUE			After successful configuration the d	
Electronic_Key_detected	BOOL	TRUE			The detection oflid Electronic-K	
Sob_finished	BOOL	FALSE			Bit no. 6 indicatesat a write proce	
Job_in_progress	BOOL	FALSE			Bit no. 7 indicatesat a write proce	
🗏 🍫 Receive_data	ARRAY [0123]				Only key data.	
Receive_data[0]	BYTE	16#00				
Receive_data[1]	BYTE	16#01				
Receive_data[2]	BYTE	16#02				
Receive_data[3]	BYTE	16#03				
Receive_data[4]	BYTE	16#04				
Receive_data[5]	BYTE	16#05				
Receive_data[6]	BYTE	16#06				
Receive_data[7]	BYTE	16#07				-

Bild 24: Beispiel Schlüsseldaten lesen

10.3. Inhalt des Schlüsselspeichers mittels der Bausteinschnittstelle schreiben

Die gleiche Bausteinschnittstelle ist so vorbereitet, dass damit auch Daten auf den Schlüssel geschrieben werden können. Hierzu muss die Start-Adresse und die Anzahl der Bytes definiert werden (vgl. Kapitel 4.2). In diesem Beispiel werden die ersten 8 Bytes des Schlüsselspeichers geschrieben. Füllen Sie im Array *Receive_data* die Daten in der Spalte *Prepared value*, setzen das Bit *Write_Electronic_Key* auf *TRUE* und übertragen alles in dem Sie auf die Schaltfläche *Force value* 🚵 klicken. Anschließend muss das Bit *Write_Electronic_Key* wieder zurückgesetzt werden auf den Wert *FALSE*.

MAIN [Online] 🕆 🗙 Output						
EKS_Library_Integration.EKS_Library_	_Integration.MAIN					
Expression	Туре	Value	Prepared value	Address	Comment	*
EKS_Write_01	EKS_Write					
* Write_Electronic_Key	BOOL	TRUE			Bit to write the key.	
* Start_address	BYTE	16#00			Defines first byte the memory of	
Number_of_bytes	BYTE	16#08			Defines the number of bytes in the	
🖃 🦘 Transmit_data	ARRAY [0115]				The content of these bytes is writte	
* Transmit_data[0]	BYTE	16#00				
M Transmit_data[1]	BYTE	16#01				
* Transmit_data[2]	BYTE	16#02				
Transmit_data[3]	BYTE	16#03				
牧 Transmit_data[4]	BYTE	16#04				
Transmit_data[5]	BYTE	16#05				
* Transmit_data[6]	BYTE	16#06				
🏷 Transmit_data[7]	BYTE	16#07				-

Bild 25: Beispiel Schlüsseldaten schreiben

11. Wichtiger Hinweis – Bitte unbedingt sorgfältig beachten!

Dieses Dokument richtet sich an einen Konstrukteur, der die entsprechenden Kenntnisse in der Sicherheitstechnik hat und die Kenntnis der einschlägigen Normen besitzt, z. B. durch eine Ausbildung zum Sicherheitsingenieur. Nur mit entsprechender Qualifikation kann das vorgestellte Beispiel in eine vollständige Sicherheitskette integriert werden.

Das Beispiel stellt nur einen Ausschnitt aus einer vollständigen Sicherheitskette dar und erfüllt für sich allein genommen keine Sicherheitsfunktion. Zur Erfüllung einer Sicherheitsfunktion muss beispielsweise zusätzlich die Abschaltung der Energie der Gefährdungsstelle sowie auch die Software innerhalb der Sicherheitsauswertung betrachtet werden.

Die vorgestellten Applikationen stellen lediglich Beispiele zur Lösung bestimmter Sicherheitsaufgaben zur Absicherung von Schutztüren dar. Bedingt durch applikationsabhängige und individuelle Schutzziele innerhalb einer Maschine/Anlage können die Beispiele nicht erschöpfend sein.

Falls Fragen zu diesem Beispiel offen bleiben, wenden Sie sich bitte direkt an uns.

Nach der Maschinenrichtlinie 2006/42/EG ist der Konstrukteur einer Maschine bzw. Anlage verpflichtet, eine Risikobeurteilung durchzuführen und Maßnahmen zur Minderung des Risikos zu ergreifen. Er muss sich hierbei an die einschlägigen nationalen und internationalen Sicherheitsnormen halten. Normen stellen in der Regel den aktuellen Stand der Technik dar. Der Konstrukteur sollte sich daher laufend über Änderungen in den Normen informieren und seine Überlegungen darauf abstimmen, relevant sind u.a. die EN ISO 13849 und EN 62061. Diese Applikation ist immer nur als Unterstützung für die Überlegungen zu Sicherheitsmaßnahmen zu sehen.

Der Konstrukteur einer Maschine/Anlage ist verpflichtet die Sicherheitstechnik selbst zu beurteilen. Die Beispiele dürfen nicht zu einer Beurteilung herangezogen werden, da hier nur ein kleiner Ausschnitt einer vollständigen Sicherheitsfunktion sicherheitstechnisch betrachtet wurde.

Um die Applikationen der Sicherheitsschalter an Schutztüren richtig einsetzen zu können, ist es unerlässlich, dass die Normen EN ISO 13849-1, EN ISO 14119 und alle relevanten C-Normen für den jeweiligen Maschinentyp beachtet werden. Dieses Dokument ersetzt keinesfalls eine eigene Risikoanalyse und kann auch nicht als Basis für eine Fehlerbeurteilung herangezogen werden.

Insbesondere bei einem Fehlerausschluss ist zu beachten, dass dieser nur vom Konstrukteur einer Maschine bzw. Anlage durchgeführt werden kann und dass hierzu eine Begründung notwendig ist. Ein genereller Fehlerausschluss ist nicht möglich. Nähere Auskünfte zum Fehlerausschluss gibt die EN ISO 13849-2.

Änderungen an Produkten oder innerhalb der Baugruppen von dritten Anbietern, die in diesem Beispiel verwendet werden, können dazu führen, dass die Funktion nicht mehr gewährleistet ist oder die sicherheitstechnische Beurteilung angepasst werden muss. In jedem Fall sind die Angaben in den Betriebsanleitungen sowohl seitens EUCHNER, als auch seitens der dritten Anbieter zugrunde zu legen, bevor diese Applikation in eine gesamte Sicherheitsfunktion integriert wird. Sollten hierbei Widersprüche zwischen Betriebsanleitungen und diesem Dokument auftreten, setzen Sie sich bitte mit uns direkt in Verbindung.

Verwendung von Marken- und Firmennamen

Alle aufgeführten Marken- und Firmennamen sind Eigentum des jeweiligen Herstellers. Deren Verwendung dient ausschließlich zur eindeutigen Identifikation kompatibler Peripheriegeräte und Betriebsumgebungen im Zusammenhang mit unseren Produkten.

Euchner GmbH + Co. KG Kohlhammerstraße 16 D-70771 Leinfelden-Echterdingen info@euchner.de www.euchner.de

Ausgabe: AP000240-01-01/19 Titel: Applikation EKS Einbindung EKS mit PROFINET-Schnittstelle in BECKHOFF TwinCAT 3

Copyright: © EUCHNER GmbH + Co. KG, 01/2019

Technische Änderungen vorbehalten, alle Angaben ohne Gewähr.