

Applikation

DE Einbindung EKS mit TCP/IP Schnittstelle in BECKHOFF TwinCAT3®

Inhalt

1.	Zu d	iesem Dokument	3
	1.1.	Version	3
	1.2.	Gültigkeit	3
	1.3.	Zielgruppe	3
	1.4.	Ergänzende Dokumente	3
	1.5.	Hinweis	3
2.	Verw	vendete Bauteile / Module	4
	2.1.	EUCHNER	4
	2.2.	Andere	4
	2.3.	Software	4
3.	Funk	tionsbeschreibung	4
4.	Impo	ortieren des Funktionsbausteins	5
5.	Einbi	inden des Funktionsbausteins	7
	5.1.	Variablentabelle des Funktionsbausteins	7
	5.2.	Einfügen des Funktionsbausteins	7
6.	Schl	üsseldaten lesen und schreiben	9
	6.1.	Programm an die SPS übertragen	9
	6.2.	Inhalt des Schlüsselspeichers mittels einer Beobachtungstabelle lesen	9
	6.3.	Inhalt des Schlüsselspeichers mittels einer Beobachtungstabelle schreiben	10
7.	Wich	itiger Hinweis – Bitte unbedingt sorgfältig beachten!	

1. Zu diesem Dokument

1.1. Version

Version	Datum	Änderung/Erweiterung	Kapitel
01-09/20	09.09.2020	Erstellung	Alle

1.2. Gültigkeit

Dieses Dokument dient zur Einbindung und Projektierung des EKS mit TCP/IP-Schnittstelle in BECKHOFF TwinCAT3®.

1.3. Zielgruppe

Konstrukteure und Anlagenplaner für Sicherheitseinrichtungen an Maschinen, sowie Inbetriebnahme- und Servicefachkräfte, die über spezielle Kenntnisse im Umgang mit Sicherheitsbauteilen sowie über Kenntnisse bei der Installation, Inbetriebnahme, Programmierung und Diagnose von speicherprogrammierbaren Steuerungen (SPS) und Bussystemen verfügen.

1.4. Ergänzende Dokumente

Die Gesamtdokumentation für diese Applikation besteht aus folgenden Dokumenten:

Dokumenttitel (Dokumentnummer)	Inhalt	
Handbuch (2100420)	Electronic-Key-System Handbuch Schlüsselaufnahme EKS und EKS FSA mit Ethernet TCP/IP Schnittstelle	www
Ggf. beiliegende Daten- blätter	Artikelspezifische Information zu Abweichungen oder Ergänzungen	

1.5. Hinweis

Diese Applikation basiert auf dem Handbuch des EKS mit TCP/IP-Schnittstelle. Die technischen Details sowie weitere Informationen entnehmen Sie bitte dem Handbuch. Im weiteren Verlauf des Dokuments wird das EKS mit TCP/IP-Schnittstelle kurz "EKS" genannt.

2. Verwendete Bauteile / Module

2.1. EUCHNER

 (\mathbf{i})

Beschreibung	Bestellnummer / Artikel
EKS mit TCP/IP-Schnittstelle	100401 / EKS-A-IEX-G01-ST02/03
	099265 / EKS-A-IEXA-G01-ST02/03/04

TIPP!

Weitere Informationen und Downloads zu den o.g. EUCHNER-Produkten finden Sie unter <u>www.euchner.de</u>. Geben Sie einfach die Bestellnummer in die Suche ein.

2.2. Andere

Beschreibung	Bestellnummer / Artikel
BECKHOFF CX9020-0110-M930	CX9020-0110-M930

2.3. Software

Beschreibung	Version
BECKHOFF TwinCAT3®	3.1.4024.10
BECKHOFF TF6310 TC3 TCP/IP inkl. Lizenz	3.1.9.0

3. Funktionsbeschreibung

Bei den EKS TCP/IP Geräten handelt es sich um ein Schreib-/Lesesystem mit Elektronik für die induktive bidirektionale Schnittstelle zum Transponder und der Schnittstellenelektronik.

Die System-Anbindung erfolgt über die integrierte TCP/IP-Schnittstelle, welche als RJ45-Buchse ausgeführt ist. Zur TCP/IP-Anbindung wird ggf. ein separater Switch benötigt. Das EKS besitzt keinen integrierten Switch.

Der aktuelle Zustand der Schlüsselaufnahme wird über eine 3-farbige LED angezeigt.

Der Schlüssel wird für den Betrieb an der Schlüsselaufnahme platziert. Die Stromversorgung für den Transponder und die Daten werden kontaktlos zwischen Schlüsselaufnahme und Schlüssel übertragen.

Die Datenübertragung zwischen Steuerung und EKS wird mittels eines Funktionsbausteins realisiert. Der Funktionsbaustein handelt den Aufbau der Kommunikation zwischen Steuerung und EKS sowie das Senden und Empfangen der TCP/IP Kommunikationstelegramme.

Der Funktionsbaustein kann auf <u>www.euchner.de</u> im Bereich *Downloads/Software/Beispieldateien* und *Bibliotheken/EKS* heruntergeladen werden.

4. Importieren des Funktionsbausteins

1. Klicken Sie mit der rechten Maustaste auf POUs und wählen Sie Import from ZIP aus.

Bild 1: Auswahl Import from ZIP

2. Wählen Sie den komprimierten (ZIP) Ordner aus und klicken Sie auf Öffnen.

🦉 Open						×
← → • ↑ 🖊 :	> This PC	> Downloads >	√ Ū	Search Downloads		Q
Organize 🔻 New	/ folder			== -		?
🛃 Quick access	^ Na	ame	Date modified	Туре	Size	
Desktop		Functionblock_EKS_TCPIP_TwinCAT3_202	9/9/2020 11:15 AM	Compressed (zipp		48 KB
🕹 Downloads 🚿	r -					
🔮 Documents 🚿	r -					
📰 Pictures 刘	*					
TcXaeShell Appli	ic					
TcXaeShell						
💻 This PC						
📃 Desktop						
Documents						
🕂 Downloads	v <					>
F	File <u>n</u> ame:	Functionblock_EKS_TCPIP_TwinCAT3_202009	07.zip ~	ZIP files (*.zip)		\sim
				Open 💦	Cancel	

Bild 2: Auswählen des komprimierten Ordners

3. Schließen Sie den Import des Funktionsbausteins durch das Klicken auf OK ab.

ZipImportDialog	—		\times
Importable items:			
FB_EKS_TCP_IP.TcPOU Add ~			
Select > Deselect > Set Action > Only PLC object	ects		
	ок 💦	Can	cel

Bild 3: Import abschließen

EUCHNER

5. Einbinden des Funktionsbausteins

5.1. Variablentabelle des Funktionsbausteins

	Variable	Verwendung	Datentyp	Beschreibung
222 FD_EKS_TCP_IP	FB_EKS_TCP_IP	-	FB _EKS_TCP_IP	Instanz für den FB
SktConEnable Done <u>112</u> EKSReadMode EKSKeyDataRead SktOpen - 777	SktConEnable	Input	BOOL	Aktiviere TCP/IP Socketverbindung
SktWriteMan EKSStatusMessage 777 222 2420 252 2420 252	EKSReadMode	Input	USINT	Modus der Abfrage 1= manuell; 2= automatisch
JobFinished JobFinished 777 JobFinishedActiveTime SktError 777	SktWriteMan	Input	BOOL	Trigger zum Lesen der Daten im <i>EKSReadMode</i> = 1
222 EXStartAddressWrite	AMSNetId	Input	T_AmsNetId	Adresse des lokalen Rechners im TwinCAT-Netzwerk
222 — EKSNumberOfBytesWrite 222 — EKSKeyDataWrite	IPAddress	Input	T_IPv4Addr	EKS IP-Adresse
ZZ EKSWriteKeyCommand	JobFinishedActiveTime	Input	TIME	Zeitwert wie lange das Bit <i>JobFinished</i> nach dem Schreibvorgang aktiv bleiben soll
	EKSStartAdressRead	Input	BYTE	Startadresse der anzufragenden Schlüsseldaten
	EKSNumberOfBytesRead	Input	BYTE	Anzahl der anzufragenden Schlüsseldaten
	EKSStartAdressWrite	Input	BYTE	Startadresse der zuschreibenden Schlüsseldaten
	EKSNumberOfBytesWrite	Input	BYTE	Anzahl der zuschreibenden Schlüsseldaten
	EKSKeyDataWrite	Input	Array[0115] of BYTE	Zuschreibende Daten
	EKSWriteKeyCommand	Input	BOOL	Befehl zum Schlüsselspeicher beschreiben
	Done	Output	BOOL	-
	EKSKeyDataRead	Output	Array[0123] of BYTE	Antwort der Nutzdaten des EKS Schlüssels
	SktOpen	Output	BOOL	Socketverbindung ist geöffnet
	EKSKeyIN	Output	BOOL	EKS Schlüssel in der Schlüsselaufnahme platziert
	EKSStatusMessage	Output	BOOL	Eine EKS Statusmeldung wurde empfangen
	EKSStatusNumber	Output	BYTE	EKS Status
	JobFinished	Output	BOOL	Schreibvorgang abgeschlossen
	SktError	Output	BOOL	Fehler Socketverbindung

 Tabelle 1:
 Variablentabelle Funktionsbaustein

5.2. Einfügen des Funktionsbausteins

^{1.} Öffnen Sie ein Programm (z.B. *MAIN (PRG)*) und ziehen Sie aus der *Toolbox* mit Drag & Drop den Baustein in ein neues Netzwerk.

Bild 4: Hinzufügen des Bausteins im Hauptprogramm

- 2. Es wird automatisch eine Instanz des Bausteins erzeugt. Schreiben Sie den **Namen** der Instanz *FB_EKS_TCP_IP* in das Feld für die Variable. In diesem Beispiel geben Sie *EKS_Milling* ein und bestätigen mit der Eingabetaste. In der Variablentabelle (*MAIN (PRG)*) wird die Variable automatisch mit dem dazugehörigen Variablentyp angelegt.
- 3. Erzeugen Sie nun, wie in Schritt 2, für jeden Ein- und Ausgang die entsprechenden Variablen.
- 4. Fügen Sie dem Netzwerk eine Eingangsvariable (z.B. EKS_Milling_SktConEnable) als Kontakt hinzu.

Applikation EKS Einbindung EKS mit TCP/IP Schnittstelle in BECKHOFF TwinCAT3®

EUCHNER

Variable	Wert
EKSReadMode	 1 = manueller Modus; Die Schlüsseldaten werden durch Triggern der Variable SktWriteMan empfangen 2 = Automatischer Modus; Das Empfangen der Schlüsseldaten wird durch Auslesen des Key-Status KeyIN (siehe Handbuch) getriggert.
AMSNetId	Adresse des lokalen Rechners im TwinCAT-Netzwerk, eingeschlossen in Hochkomma
IPAddress	IPv4-Adresse, eingeschlossen in Hochkomma z.B. '192.168.0.222'
JobFinishedActiveTime	Variabel (Zeitwert (z.B. T#500ms) → Zeitwert wie lange das Bit JobFinished nach dem Schreibvorgang aktiv bleiben soll
EKSStartAddressRead	Variabel (Wert von 0 bis 116) → Startadresse der verwendeten Nutzdaten
EKSNumberOfBytesRead	Variabel (Wert von 1 bis 124) \rightarrow Anzahl der zu lesenden Bytes
EKSStartAddressWrite	Variabel (Wert von 0 bis 112) → Startadresse der zu schreibenden Nutzdaten
EKSNumberOfBytesWrite	Variabel (Wert von 4 bis 116) → Anzahl der zu schreibenden Bytes

Tabelle 2: Eingangsvariablen

i

WICHTIG

Beim Schreib-/Lese-Schlüssel mit frei programmierbaren 116 Bytes ist der Speicher in 4-Byte-Blöcken organisiert. Dies bedeutet, die Start-Adresse muss beim Schreiben im Bereich Byte Nr. 0 bis Byte Nr. 112 immer in 4-Byte-Schritten angegeben werden (Byte Nr. 0, 4, 8 ... 112). Außerdem muss immer in einem Vielfachen von 4-Byte großen Blöcken geschrieben werden (4, 8, 12 ... 116 Bytes)! Beim Lesen kann allerdings wiederum byteweise auf den Speicher zugegriffen werden, ohne die oben genannte Einschränkung beim Schreiben. Der Schreib-/Lese-Schlüssel hat zusätzlich eine einmalige 8-Byte große Seriennummer, die bei der Schlüssel-Produktion absolut unzerstörbar in den Speicher zur sicheren Unterscheidung eines jeden einzelnen Schlüssels. Für eine sichere Unterscheidung ist es erforderlich alle 8 Bytes komplett auszuwerten. Die Seriennummer schließt sich an den frei programmierbaren Speicher an. Die Seriennummer kann unter Eingabe der Start-Adresse Byte Nr. 116 und Anzahl Bytes 8 ausgelesen werden.

(i) TIPP

Die Vergabe der IP-Adresse der Schlüsselaufnahme EKS wird mittels des Web-Interfaces durchgeführt. Die Beschreibung hierzu finden Sie im Handbuch, Kapitel 7.2

EUCHNER

6. Schlüsseldaten lesen und schreiben

6.1. Programm an die SPS übertragen

Kompilieren Sie das Programm, laden es in die Steuerung und gehen Sie anschließend Online.

6.2. Inhalt des Schlüsselspeichers mittels einer Beobachtungstabelle lesen

Durch Setzen des Bits *EKS_Milling_SktConEnable* wird die Verbindung zum EKS aufgebaut und *SktOpen* wird *True*. Sobald ein Schlüssel in der Schlüsselaufnahme platziert wird, wechselt *EKSKeyIN* zu *True*.

Bild 6: Instanzbaustein online

Durch die Parametrierung am Eingang *EKSReadMode* mit dem Wert *2*, werden die Schlüsseldaten nach dem Platzieren des Schlüssels automatisch ausgelesen. Dies kann in einer Beobachtungstabelle beobachtet werden.

Watch 1						
Expression	Application	Туре	Value			
MAIN.EKS_Milling_KeyDataRead	EKS_Ethernet_TCP	ARRAY [0123] OF BYTE				
EKS_Milling_KeyDataRead[0]		BYTE	16#01			
EKS_Milling_KeyDataRead[1]		BYTE	16#02			
EKS_Milling_KeyDataRead[2]		BYTE	16#03			
EKS_Milling_KeyDataRead[3]		BYTE	16#04			
EKS_Milling_KeyDataRead[4]		BYTE	16#05			
EKS_Milling_KeyDataRead[5]		BYTE	16#06			

Bild 7: Beobachtungstabelle Schlüsseldaten "Lesen"

6.3. Inhalt des Schlüsselspeichers mittels einer Beobachtungstabelle schreiben

Die Beobachtungstabelle wurde so vorbereitet, dass damit auch Daten auf den Schlüssel geschrieben werden können. Hierzu wurden Werte, wie im nachfolgenden Screenshot zu sehen, vorbereitet. Die Eingabe der Werte in die Spalte *Prepared value* muss mit dem Button *Write values* bestätigt werden. Die Werte werden damit in die Spalte *Value* übernommen.

Wa	Watch 1						
Expression		Application	Туре	Value	Prepared value		
Ð	MAIN.EKS_Milling_KeyDataRead	EKS_Ethernet_TCP	ARRAY [0123] OF BYTE				
	MAIN.EKS_Milling_KeyDataWrite	EKS_Ethernet_TCP	ARRAY [0115] OF BYTE				
	EKS_Milling_KeyDataWrite[0]		BYTE	16#0A	16#0A		
EKS_Milling_KeyDataWrite[1]			BYTE	16#0B	16#0B		
	EKS_Milling_KeyDataWrite[2]		BYTE	16#0C	16#0C		
	EKS_Milling_KeyDataWrite[3]		BYTE	16#0D	16#0D		
EKS_Milling_KeyDataWrite[4]			BYTE	16#0E	16#0E		
EKS_Milling_KeyDataWrite[5]			BYTE	16#0F	16#0F		

Bild 8: Beobachtungstabelle Schlüsseldaten "Schreiben"

Durch das Ausführen des Schreibbefehls *EKSWriteKeyCommand* werden die modifizierten Daten in den Speicher des Schlüssels geschrieben. Dieses Bit muss anschließend wieder zurückgesetzt werden. Zum Ausführen genügt eine Flanke.

MAIN [Online] EKS_Ethernet_TCP_IP.EKS_Ethernet_TCP_IP.MAIN 1 EKS Milling EKS Milling SktConEnable FB EKS TCP IF SktConEnable 2 · EKSReadMode FALSE SktWriteMan '5.79.109.66.1.1' -AMSNetId '192.168.0.222' -IPAddress EK E JobFinishedActiveTime T#500ms -EKSStartAddressRead 0 -124 -EKSNumberOfBytesRead EKSStartAddressWrite 0 -116 -EKSNumberOfBytesWrite EKS Milling KeyDataWrite — EKSKeyDataWrite EKS Mill WriteKev EKSWriteKeyCommand

EUCHNER

Watch 1			
Expression	Application	Туре	Value
MAIN.EKS_Milling_KeyDataRead	EKS_Ethernet_TCP	ARRAY [0123] OF BYTE	
EKS_Milling_KeyDataRead[0]		BYTE	16#0A
EKS_Milling_KeyDataRead[1]		BYTE	16#0B
EKS_Milling_KeyDataRead[2]		BYTE	16#0C
EKS_Milling_KeyDataRead[3]		BYTE	16#0D
EKS_Milling_KeyDataRead[4]		BYTE	16#0E
EKS_Milling_KeyDataRead[5]		BYTE	16#0F

Bild 10: Beobachtungstabelle Schlüsseldaten "Lesen" aktualisiert

DE

7. Wichtiger Hinweis – Bitte unbedingt sorgfältig beachten!

Dieses Dokument richtet sich an einen Konstrukteur, der die entsprechenden Kenntnisse in der Sicherheitstechnik hat und die Kenntnis der einschlägigen Normen besitzt, z.B. durch eine Ausbildung zum Sicherheitsingenieur. Nur mit entsprechender Qualifikation kann das vorgestellte Beispiel in eine vollständige Sicherheitskette integriert werden.

Das Beispiel stellt nur einen Ausschnitt aus einer vollständigen Sicherheitskette dar und erfüllt für sich allein genommen keine Sicherheitsfunktion. Zur Erfüllung einer Sicherheitsfunktion muss beispielsweise zusätzlich die Abschaltung der Energie der Gefährdungsstelle sowie auch die Software innerhalb der Sicherheitsauswertung betrachtet werden.

Die vorgestellten Applikationen stellen lediglich Beispiele zur Lösung bestimmter Sicherheitsaufgaben zur Absicherung von Schutztüren dar. Bedingt durch applikationsabhängige und individuelle Schutzziele innerhalb einer Maschine/Anlage können die Beispiele nicht erschöpfend sein.

Falls Fragen zu diesem Beispiel offen bleiben, wenden Sie sich bitte direkt an uns.

Nach der Maschinenrichtlinie 2006/42/EG ist der Konstrukteur einer Maschine bzw. Anlage verpflichtet, eine Risikobeurteilung durchzuführen und Maßnahmen zur Minderung des Risikos zu ergreifen. Er muss sich hierbei an die einschlägigen nationalen und internationalen Sicherheitsnormen halten. Normen stellen in der Regel den aktuellen Stand der Technik dar. Der Konstrukteur sollte sich daher laufend über Änderungen in den Normen informieren und seine Überlegungen darauf abstimmen, relevant für die funktionale Sicherheit sind u.a. die EN ISO 13849 und EN 62061. Diese Applikation ist immer nur als Unterstützung für die Überlegungen zu Sicherheitsmaßnahmen zu sehen.

Der Konstrukteur einer Maschine/Anlage ist verpflichtet die Sicherheitstechnik selbst zu beurteilen. Die Beispiele dürfen nicht zu einer Beurteilung herangezogen werden, da hier nur ein kleiner Ausschnitt einer vollständigen Sicherheitsfunktion sicherheitstechnisch betrachtet wurde.

Um die Applikationen der Sicherheitsschalter an Schutztüren richtig einsetzen zu können, ist es unerlässlich, dass die Normen EN ISO 13849-1, EN ISO 14119 und alle relevanten C-Normen für den jeweiligen Maschinentyp beachtet werden. Dieses Dokument ersetzt keinesfalls eine eigene Risikobeurteilung und kann auch nicht als Basis für eine Fehlerbeurteilung herangezogen werden.

Insbesondere bei einem Fehlerausschluss ist zu beachten, dass dieser nur vom Konstrukteur einer Maschine bzw. Anlage durchgeführt werden kann und dass hierzu eine Begründung notwendig ist. Ein genereller Fehlerausschluss ist nicht möglich. Nähere Auskünfte zum Fehlerausschluss gibt die EN ISO 13849-2.

Änderungen an Produkten oder innerhalb der Baugruppen von dritten Anbietern, die in diesem Beispiel verwendet werden, können dazu führen, dass die Funktion nicht mehr gewährleistet ist oder die sicherheitstechnische Beurteilung angepasst werden muss. In jedem Fall sind die Angaben in den Betriebsanleitungen sowohl seitens EUCHNER, als auch seitens der dritten Anbieter zugrunde zu legen, bevor diese Applikation in eine gesamte Sicherheitsfunktion integriert wird. Sollten hierbei Widersprüche zwischen Betriebsanleitungen und diesem Dokument auftreten, setzen Sie sich bitte mit uns direkt in Verbindung.

Verwendung von Marken- und Firmennamen

Alle aufgeführten Marken- und Firmennamen sind Eigentum des jeweiligen Herstellers. Deren Verwendung dient ausschließlich zur eindeutigen Identifikation kompatibler Peripheriegeräte und Betriebsumgebungen im Zusammenhang mit unseren Produkten.

EUCHNER GmbH + Co. KG Kohlhammerstraße 16 70771 Leinfelden-Echterdingen Deutschland info@euchner.de www.euchner.de

Ausgabe: AP000261-01-09/20 Titel: Applikation EKS Einbindung EKS mit TCP/IP Schnittstelle in BECKHOFF TwinCat3®

Copyright: © EUCHNER GmbH + Co. KG, 09/2020

Technische Änderungen vorbehalten, alle Angaben ohne Gewähr.