

# **Connection of CES-AP to Pilz PDP67**



# Content

| Interlocking device according to EN ISO 14119       | . 2 |
|-----------------------------------------------------|-----|
| Components/modules used                             | . 2 |
| EUCHNER                                             |     |
| Other                                               | . 2 |
| Functional description                              | . 3 |
| General                                             | . 3 |
| Connections                                         | . 3 |
| Safety assessment                                   | . 3 |
| Principle circuit diagram                           | . 4 |
| Parameter assignment of the Decentralised periphery | . 5 |
| Program                                             | . 5 |
| Inputs iO and i1                                    | . 5 |
| Reset                                               |     |
| General                                             | . 7 |
| Output parameters                                   | . 8 |
| Important note – please observe carefully!          | . 9 |

Subject to technical modifications, no responsibility is accepted for the accuracy of this information. © EUCHNER 2015



## Interlocking device according to EN ISO 14119

Safety function Interlocking device according to EN ISO 14119

Reliability figures according to EN ISO 13849 PL e

## Components/modules used

#### **EUCHNER**

| Description                                 | Order no./ item designation      |
|---------------------------------------------|----------------------------------|
| Safety switches with transponder technology | 111145 / CES-AP-C01-AH-SB-111145 |
|                                             | 111708 / CES-AP-C01-CH-SB-111708 |

Tip: More information and downloads about the above mentioned EUCHNER products can be found at <u>www.EUCHNER.de</u>. Simply enter the order number into the search field.

#### Other

| Description             | Items                                               |
|-------------------------|-----------------------------------------------------|
| Base Unit               | PNOZ m1p v6.5<br>PNOZ m0p                           |
| Expansion module        | PNOZ ml2p - 773602                                  |
| Decentralised periphery | PDP F 8DI ION HP - 773601<br>PDP F 8DI ION - 773600 |

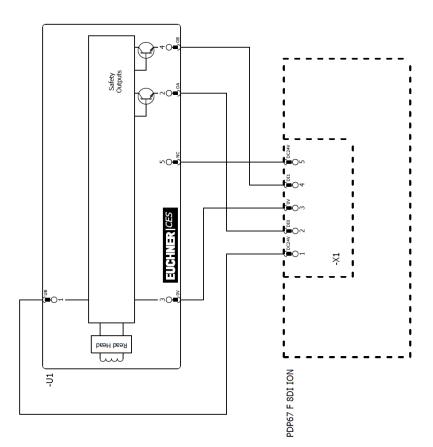


## **Functional description**

#### General

The CES-AP is part of an interlocking device in accordance with EN ISO 14119. The two safe outputs of the CES are connected to a PDP67 Decentralised periphery.

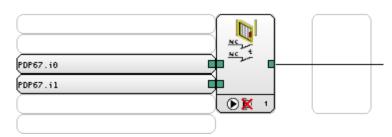
#### Connections


| Designation | Function     | Use in this example                                                                                                                               |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| UB          | Power supply | Connected to 24 V DC.<br>Note: It has to be configured with PNOZ Multi Configurator.                                                              |
| OA, OB      |              | Switch-off of at least one of the outputs must lead to shut-<br>down of the machine or installation via the connected control<br>system.          |
|             |              | Important: The actual shutdown of the energy which is caus-<br>ing a hazard in a machine is not shown in the example and<br>must be supplemented. |

### Safety assessment

The CES-AP features complete monitoring for faults in the safety-relevant parts and in the connected cables (clock pulses at outputs OA and OB). With the device's own pulsing, switch-off or non-connection of the clock signals from the control system's safe inputs does not lead to a reduction in the PL. The example achieves PL e in accordance with EN ISO 13849-1 for the interlocking of a guard.




## Principle circuit diagram





## Parameter assignment of the Decentralised periphery

#### Program



#### Figure 2

### Inputs iO and i1

| Parameter                                                 | Value   |
|-----------------------------------------------------------|---------|
| Switch Type                                               | Туре 3  |
| Detection of shorts between contacts in the input circuit | Off     |
| Ι/Ο                                                       | i0 & i1 |

| Switch type:  | General     | PVIS pe 3    |            |       |         |   |       |            |   |
|---------------|-------------|--------------|------------|-------|---------|---|-------|------------|---|
| Connections:  | ed I/Os 🧕 🧕 | Decentralise | d I/Os     |       |         |   |       |            |   |
| Input 1: Equi | ipment ID:  | PDP67        | ~          | I/O:  | iO      | ~ | uses: | Test Pulse | ~ |
| Input 2: Equi | ipment ID:  | PDP67        | *          | 1/0:  | i1      | ~ | uses: | Test Pulse | ~ |
| Input 3: Equi | ipment ID:  | PDP67        | ~          | I/O:  | i2      | ~ | uses: | Test Pulse | ~ |
| Detection     | of shorts b | etween conta | cts in the | input | circuit |   |       |            |   |



### Reset

| Parameter     | Value           |
|---------------|-----------------|
| Reset Type    | Automatic Reset |
| Start-up test | Off             |

| Configure Function Elen           Function element: Safe           Switch type: N/C - | ty Gate            |            |     |   |        |              |     |
|---------------------------------------------------------------------------------------|--------------------|------------|-----|---|--------|--------------|-----|
| Input Reset General PVI:                                                              | 5                  |            |     |   |        |              |     |
| Reset Types                                                                           |                    |            |     |   |        |              |     |
| Nonitored Reset                                                                       |                    |            |     |   |        |              |     |
| O Manual Reset                                                                        |                    |            |     |   |        |              |     |
| Start-up test                                                                         |                    |            |     |   |        |              |     |
| Connections<br>© Centralised I/Os O Dece                                              | entralised I/Os    |            |     |   |        |              | =   |
| Reset Circuit: Equipment ID:                                                          | al                 | ✓ I/O      | 13  | ~ | uses:  | Test Pulse 0 | ~   |
| Detection of shorts betwe                                                             | en contacts in the | reset circ | uit |   |        |              |     |
|                                                                                       |                    |            |     |   |        |              |     |
|                                                                                       |                    | 0          | . 1 |   | Cancel |              | elp |



### General

| rameter                                                    | Value                          |
|------------------------------------------------------------|--------------------------------|
| ange Default Value                                         | Off                            |
| Configure Function Element                                 | X                              |
| Function element: Safety Gate<br>Switch type: N/C - N/C    |                                |
| Input Reset General PVIS                                   | ]                              |
| Change Default Value                                       | Period (range 0-3000): 40. ms. |
| Element ID<br>Activate diagnostics<br>Select Element ID: 1 |                                |
| Equipment ID                                               |                                |
| Enter equipment ID:                                        |                                |
| Cocation description                                       |                                |
| Enter location description:                                |                                |



### **Output parameters**

| Parameter                                                                | Value                           |
|--------------------------------------------------------------------------|---------------------------------|
| Decentralised I/Os (UB)                                                  | 24 V DC Output                  |
| Activate In-/Output                                                      |                                 |
| I/O<br>Centralised I/Os Ocentralised I/<br>Equipment ID: PDP67 V I/O: 01 | /Os<br>v uses: 24 V DC Output v |

| <ul> <li>Negate</li> <li>Input signal after power</li> </ul> | on is "1" |          |                |       |    |
|--------------------------------------------------------------|-----------|----------|----------------|-------|----|
| Filter time<br>With filter time<br>Change Default Value      |           | Period ( | (range 0-3000) | ); 40 | ms |
| Equipment ID<br>Enter equipment ID:                          |           |          |                |       |    |
| Location description                                         |           |          |                |       | 4  |



## Important note - please observe carefully!

This document is intended for a design engineer who possesses the requisite knowledge in safety engineering and knows the applicable standards, e.g. through training for qualification as a safety engineer. Only with the appropriate qualification is it possible to integrate the introduced example into a complete safety chain.

The example represents only a part of a complete safety chain and does not fulfill any safety function on its own. In order to fulfill a safety function, the energy switch-off function for the hazard location and the software within the safety evaluation must also be considered, for example.

The introduced applications are only examples for solving certain safety tasks for protecting safety guards. The examples cannot be comprehensive due to the application-dependent and individual protection goals within a machine/installation.

#### If questions pertaining to this example remain open, please contact us directly.

In accordance with Machinery Directive 2006/42/EC, the design engineer of a machine or installation is obligated to perform a risk assessment and take measures to reduce the risk. When doing this, the engineer must comply with the applicable national and international standards. Standards generally represent the current state of the art. Therefore, the design engineer should continuously inform himself about changes in the standards and adapt his considerations to them. Relevant standards include EN ISO 13849 and EN 62061. This application must be regarded only as assistance for the considerations about safety measures.

The design engineer of a machine/installation is obligated to assess the safety technology himself. The examples must not be used for assessment, because only a small excerpt of a complete safety function was considered in terms of safety engineering here.

In order to be able to use the safety switch applications correctly on safety guards, it is indispensable to observe the standards EN ISO 13849-1, EN ISO 14119 and all relevant C-standards for the respective machine type. Under no circumstances does this document replace the engineer's own risk assessment, and it cannot serve as the basis for a fault assessment.

Particularly in case of a fault exclusion, it must be noted that this can be performed only by the design engineer of a machine or installation and requires a reason. A general fault exclusion is not possible. More information about fault exclusion can be found in EN ISO 13849-2.

Changes at products or within assemblies from third-party suppliers used in this example can lead to the function no longer being ensured or the safety assessment having to be adapted. In any event, the information in the operating instructions on the part of EUCHNER, as well as on the part of third-party suppliers, must be taken as the basis before this application is integrated into an overall safety function. If contradictions should arise between the operating instructions and this document, please contact us directly.

#### Use of brand and company names

All mentioned brand and company names are property of the respective manufacturers. The use is only for clear identification of compatible peripheral devices and environment of operation in combination with our products.

EUCHNER GmbH + Co. KG · Kohlhammerstraße 16 · 70771 Leinfelden-Echterdingen Telefon: +49 711 75 97 -0 · Telefax: +49 711 75 97 -303 · info@euchner.de · <u>www.euchner.de</u>

Subject to technical modifications, no responsibility is accepted for the accuracy of this information. © EUCHNER 2015