

# Connection of CET3-AP to Beckhoff CX1030/CX1010 (EL-module)



# Content

| Guard locking spring applied - power on released according to EN ISO 14119 (closed-circuit current principle) | . 2 |
|---------------------------------------------------------------------------------------------------------------|-----|
| Components/modules used                                                                                       | . 2 |
| EUCHNER                                                                                                       | . 2 |
| Other                                                                                                         | . 2 |
| Functional description                                                                                        | . 3 |
| General                                                                                                       | . 3 |
| Connections                                                                                                   | . 3 |
| Safety assessment                                                                                             | . 3 |
| Principle circuit diagram                                                                                     | . 4 |
| Parameter assignment in the control system                                                                    | . 5 |
| Input EL1904                                                                                                  | . 5 |
| Output EL2904                                                                                                 | . 6 |
| Application example                                                                                           | . 7 |
| Important note – please observe carefully!                                                                    | . 9 |

Subject to technical modifications, no responsibility is accepted for the accuracy of this information. © EUCHNER 2016



More than safety.

# Guard locking spring applied – power on released according to EN ISO 14119 (closed-circuit current principle)

 Safety function
 Guard locking for personal protection according to EN ISO 14119

 Reliability figures according to EN ISO 13849
 Category 4, PL e

### Components/modules used

#### **EUCHNER**

| Description                                       | Order no./item designation                  |  |  |
|---------------------------------------------------|---------------------------------------------|--|--|
| Safety switches with guard locking and guard lock | 111346 / CET3-AP-CRA-AH-50X-SI-111346       |  |  |
| monitoring with transponder technology            | 113141 / CET3-AP-CRA-AH-50X-SI-C2354-113141 |  |  |
|                                                   | 114073 / CET3-AP-CRA-AH-50F-SI-114073       |  |  |
|                                                   | 114223 / CET3-AP-CRA-AH-50X-SI-C2333-114223 |  |  |
|                                                   | 114504 / CET3-AP-CRA-AH-50F-SI-C2354-114504 |  |  |
|                                                   | 114516 / CET3-AP-CRA-AH-50F-SI-C2333-114516 |  |  |
|                                                   | 114626 / CET3-AP-CRA-AH-50F-SI-C2357-114626 |  |  |

Tip: More information and downloads about the above mentioned EUCHNER products can be found at <u>www.EUCHNER.de</u>. Simply enter the order number into the search field.

#### Other

| Description                          | ltems           |
|--------------------------------------|-----------------|
| CX1030 CPU                           | CX1030 / CX1010 |
| Power supply + I/O Interface (E-Bus) | CX1100          |
| TwinSAFE Logic module                | EL6900          |
| TwinSAFE Input module                | EL1904          |
| TwinSAFE Output module               | EL2904          |



### **Functional description**

#### General

The CET3 is a guard locking device according to EN ISO 14119 using the closed-circuit current principle. In this example, the guard locking is controlled by a safe output of an EL2094 from a Beckhoff control system. The two safe outputs of the CET3 are connected to a safe input of an EL1904.

| Connections |
|-------------|
|-------------|

| Designation | Function                                                                            | Use in this example                                                                                                                                     |  |
|-------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| OA, OB      | Safety outputs. HIGH when the safety guard is closed and locked.                    | Switch-off of at least one of the outputs must lead to shutdown of the machine or installation via the connected control system.                        |  |
|             |                                                                                     | Important: The actual shutdown of the energy which is causing a hazard in a machine is not shown in the example and must be supplemented.               |  |
| +UCM,       | Control input for guard locking solenoid. Connect guard locking to 24 V DC to open. | Dual-channel controlled by an F-DO output.                                                                                                              |  |
| OV (UCM)    |                                                                                     | Important: According to EN ISO 14119, it shall be ensured that the hazard caused by a machine has disappeared before the guard locking can be released. |  |

### Safety assessment

The CET3 features complete monitoring for faults in the safety-relevant parts and in the connected cables (clock pulses at outputs OA and OB). With the device's own pulsing, switch-off or non-connection of the clock signals from the control system's safe inputs does not lead to a reduction in the PL. The example achieves PL e in accordance with EN ISO 13849-1 for position monitoring of the locking mechanism of guard locking.

A safety assessment for control of guard locking is not part of this example and must be supplemented for the respective machine by the design engineer in accordance with the risk assessment.



# Principle circuit diagram







# Parameter assignment in the control system

### Input EL1904

| Parameter                    | Value          |
|------------------------------|----------------|
| Sensor test Channel 1 active | FALSE          |
| Sensor test Channel 2 active | FALSE          |
| Logic of Channel 1 and 2     | Single channel |

| Index |         | Name                         | Flags | Wert                         |  |
|-------|---------|------------------------------|-------|------------------------------|--|
| ÷.    | 8000:0  | FS Operating Mode            | RW    | >1<                          |  |
| Ė.    | 8001:0  | FS Sensor Test               | BW    | >5<                          |  |
| L     | 8001:01 | Sensor test Channel 1 active | BW    | FALSE                        |  |
| L     | 8001:02 | Sensor test Channel 2 active | BW    | FALSE                        |  |
| L     | 8001:03 | Sensor test Channel 3 active | RW    | FALSE                        |  |
| L     | 8001:04 | Sensor test Channel 4 active | BW    | FALSE                        |  |
| Ė.    | 8002:0  | FS Logic of Input pairs      | BW    | >5<                          |  |
| L     | 8002:01 | Logic of Channel 1 and 2     | BW    | single logic channel 1/2 (0) |  |
| L     | 8002:03 | Logic of Channel 3 and 4     | BW    | single logic channel 3/4 (0) |  |
|       |         |                              |       |                              |  |

Figure 2. EL1904 parameterization

# EUCHNER More than safety.

### Output EL2904

| Standard outputs active    | Optional |
|----------------------------|----------|
| Current measurement active | Optional |
| Testing output active      | Optional |
| Error acknowledge active   | Optional |



Figure 3. EL2904 parameterization



### Application example



Figure 4. FB-TOF for Channel 1 to filter the test pulses



Figure 5. FB-TOF for Channel 2 to filter the test pulses



| Allgemein OR (FB 3) |       |          |        |                                       |  |  |
|---------------------|-------|----------|--------|---------------------------------------|--|--|
| L L L               | #3    |          | OR     | Online 🗖<br>Map State 🗖<br>Map Diag 🗖 |  |  |
| Channel_1           | Orln1 | ≥1       |        |                                       |  |  |
| Channel_2           | Orln2 |          | Fehler |                                       |  |  |
|                     | Orln3 | 2        |        |                                       |  |  |
|                     | Orin4 |          |        |                                       |  |  |
|                     | Orin5 | <u>x</u> |        |                                       |  |  |
|                     | Orin6 |          |        |                                       |  |  |
|                     | Orin7 | <u>x</u> | OrOut  | Ch1 or Ch2 without TOF                |  |  |
|                     | Orin8 |          |        |                                       |  |  |





Figure 7. FB-E-Stop to avoid discrepancy error



### Important note - please observe carefully!

This document is intended for a design engineer who possesses the requisite knowledge in safety engineering and knows the applicable standards, e.g. through training for qualification as a safety engineer. Only with the appropriate qualification is it possible to integrate the introduced example into a complete safety chain.

The example represents only a part of a complete safety chain and does not fulfill any safety function on its own. In order to fulfill a safety function, the energy switch-off function for the hazard location and the software within the safety evaluation must also be considered, for example.

The introduced applications are only examples for solving certain safety tasks for protecting safety guards. The examples cannot be comprehensive due to the application-dependent and individual protection goals within a machine/installation.

#### If questions pertaining to this example remain open, please contact us directly.

In accordance with Machinery Directive 2006/42/EC, the design engineer of a machine or installation is obligated to perform a risk assessment and take measures to reduce the risk. When doing this, the engineer must comply with the applicable national and international standards. Standards generally represent the current state of the art. Therefore, the design engineer should continuously inform himself about changes in the standards and adapt his considerations to them. Relevant standards include EN ISO 13849 and EN 62061. This application must be regarded only as assistance for the considerations about safety measures.

The design engineer of a machine/installation is obligated to assess the safety technology himself. The examples must not be used for assessment, because only a small excerpt of a complete safety function was considered in terms of safety engineering here.

In order to be able to use the safety switch applications correctly on safety guards, it is indispensable to observe the standards EN ISO 13849-1, EN ISO 14119 and all relevant C-standards for the respective machine type. Under no circumstances does this document replace the engineer's own risk assessment, and it cannot serve as the basis for a fault assessment.

Particularly in case of a fault exclusion, it must be noted that this can be performed only by the design engineer of a machine or installation and requires a reason. A general fault exclusion is not possible. More information about fault exclusion can be found in EN ISO 13849-2.

Changes at products or within assemblies from third-party suppliers used in this example can lead to the function no longer being ensured or the safety assessment having to be adapted. In any event, the information in the operating instructions on the part of EUCHNER, as well as on the part of third-party suppliers, must be taken as the basis before this application is integrated into an overall safety function. If contradictions should arise between the operating instructions and this document, please contact us directly.

#### Use of brand and company names

All mentioned brand and company names are property of the respective manufacturers. The use is only for clear identification of compatible peripheral devices and environment of operation in combination with our products.

EUCHNER GmbH + Co. KG · Kohlhammerstraße 16 · 70771 Leinfelden-Echterdingen Telefon: +49 711 75 97 -0 · Telefax: +49 711 75 97 -303 · info@euchner.de · <u>www.euchner.de</u>

Subject to technical modifications, no responsibility is accepted for the accuracy of this information. © EUCHNER 2016