

EKS Profinet on Siemens S7-300 – reading in EKS Electronic-Keys

Contents

EUCHNER 2 Others 2 Functional description 2 General 2 Example of an Electronic-Key structure 2 Setting the EKS Electronic-Key adapter 3 Profinet addressing 3 Write-protection setting 3 Configuration in the control system 4 Hardware 4 Programming in the control system 6 Global data blocks 6 STL program for retrieving the Electronic-Key content 7 Important note – please observe carefully! 10	Components/modules used	2
Others 2 Functional description 2 General 2 Example of an Electronic-Key structure 2 Setting the EKS Electronic-Key adapter 3 Profinet addressing 3 Write-protection setting 3 Configuration in the control system 4 Hardware 4 Programming in the control system 6 Global data blocks 6 STL program for retrieving the Electronic-Key content 7 Important note – please observe carefully! 10	EUCHNER	2
Functional description 2 General 2 Example of an Electronic-Key structure 2 Setting the EKS Electronic-Key adapter 3 Profinet addressing 3 Write-protection setting 3 Configuration in the control system 4 Hardware 4 Programming in the control system 6 Global data blocks 6 STL program for retrieving the Electronic-Key content 7 Important note – please observe carefully! 10	Others	2
General 2 Example of an Electronic-Key structure 2 Setting the EKS Electronic-Key adapter 3 Profinet addressing 3 Write-protection setting 3 Configuration in the control system 4 Hardware 4 Programming in the control system 6 Global data blocks 6 STL program for retrieving the Electronic-Key content 7 Important note – please observe carefully! 10	Functional description	2
Example of an Electronic-Key structure 2 Setting the EKS Electronic-Key adapter 3 Profinet addressing 3 Write-protection setting 3 Configuration in the control system 4 Hardware 4 Programming in the control system 6 Global data blocks 6 STL program for retrieving the Electronic-Key content 7 Important note – please observe carefully! 10	General	2
Setting the EKS Electronic-Key adapter 3 Profinet addressing 3 Write-protection setting 3 Configuration in the control system 4 Hardware 4 Programming in the control system 6 Global data blocks 6 STL program for retrieving the Electronic-Key content 7 Important note – please observe carefully! 10	Example of an Electronic-Key structure	2
Profinet addressing 3 Write-protection setting 3 Configuration in the control system 4 Hardware 4 Programming in the control system 6 Global data blocks 6 STL program for retrieving the Electronic-Key content 7 Important note – please observe carefully! 10	Setting the EKS Electronic-Key adapter	3
Write-protection setting. 3 Configuration in the control system 4 Hardware 4 Programming in the control system 6 Global data blocks 6 STL program for retrieving the Electronic-Key content 7 Important note – please observe carefully! 10	Profinet addressing	
Configuration in the control system 4 Hardware 4 Programming in the control system 6 Global data blocks 6 STL program for retrieving the Electronic-Key content 7 Important note – please observe carefully! 10	Write-protection setting	3
Hardware 4 Programming in the control system 6 Global data blocks 6 STL program for retrieving the Electronic-Key content 7 Important note – please observe carefully! 10	Configuration in the control system	4
Programming in the control system	Hardware	4
Global data blocks	Programming in the control system	6
STL program for retrieving the Electronic-Key content	Global data blocks	6
Important note – please observe carefully!	STL program for retrieving the Electronic-Key content	7
	Important note – please observe carefully!	10

Components/modules used

EUCHNER

Description	Order no./item designation
EKS Profinet	106305 / EKS-A-IIX-G01-ST02/03
EKS Electronic-Key	077859 / EKS-A-K1RDWT32-EU 084735 / EKS-A-K1BKWT32-EU 091045 / EKS-A-K1BLWT32-EU 094839 / EKS-A-K1GNWT32-EU 094840 / EKS-A-K1YEWT32-EU

Tip: More information and downloads about the aforementioned EUCHNER products can be found at www.EUCHNER.de. Simply enter the order number in the search box.

Others

Description	ltem
S7-300, CPU 315F-2 PN/DP	6ES7315-2FJ14-0AB0

Functional description

General

The EKS is connected to a Siemens S7-300 PLC via the Profinet. All data corresponding to the data structure below should be read out.

Example of an Electronic-Key structure

The data on the Electronic-Key are structured as follows:

Byte no.	Description	Туре	Length	Explanation
103 – 104	KEYCRC	CRC	2 bytes	Checksum over a certain part of the Electronic-Key as copy protection. Refer to the EKM manual for details about the CRC.
105 – 112	Expiry date	Date	8 bytes	Electronic-Key expiry date.
113 – 114	Authorization level	Word	2 bytes	Authorization level for access to the machine.
115	Department	Byte	1 byte	Number describing a limited quantity of machines or installations.
116 – 123	KeylD	KeylD	8 bytes	The KeylD is a number that is permanently pre-programmed on the Electronic-Key by EUCHNER. This number is different for each Electronic-Key. This number can be used to identify workers.

The structure corresponds to application example AP000169-2...

Setting the EKS Electronic-Key adapter

Profinet addressing

The device is to receive the address via the Siemens configuration software Simatic Manager. Accordingly, all switches are set to OFF on DIP switch S2.

Figure 1

The device is to receive the DCP name via the Siemens configuration software Simatic Manager. Accordingly, all switches are set to OFF on DIP switch S3.

Write-protection setting

The device is configured only for reading. Correspondingly, DIP switch S1.1 is set to ON.

Figure 3

EUCHNER More than safety.

Configuration in the control system

Hardware

Simatic Manager version 5.5+SP1 is used for configuration. To perform parameter assignment for the EKS on Profinet drag the object "EKS-A-IIX-GO1-ST02/03" to the Profinet. The address range can remain set at 256 to 383.

When a new Electronic-Key is inserted, the data are always read automatically from byte 0. As the user data are at the end of the Electronic-Key instead of at the beginning in this example, the actual user data are restricted. Nevertheless, a 128-byte range always must be provided in the input.

💐 HW Config - [SIMATIC 300 (Configuration) EKS Profinet]	
Station Edit Insert PLC View Options Window Help	_ 8 ×
] D 🍃 🎭 🖩 🦬 🎒 🖹 🛍 💼 📄 🏥 🖍	
Ethemet(1): PROFINET-IO-Sys	Eind: M† M↓
코(0) UR	Profile: Standard
1 PS 307 5A	
X1 MPVDP E	E · ₩ PROFIBUS DP
X2 PN-10	PROFINET IO
X2 P1 Port 1	Additional Field Devices
X2 P2 Port 2	🕀 🧰 General
	E
	EKS-A-IIX-G01-ST02/03
	EKS:A-IIX-G01-ST02/03
	EKS-A-IIXA-G01-ST02/03/04
(1) EKS-PN	
Slot Module Order number Laddress Q address Diagnostic address C	⊕ <u>⊖</u> HMI
0 EKS-PN 106305 2042*	📗 🖶 🧰 1/0
X1 Interface 2041*	Network Components
X1 Port 1 2040*	E Switching devices
7 Leven: 128 A 106305 256383	
	Euchner EKS
	Euchner GmbH + Lo. KG EKS Electronic-Key adapter PROFINET
Press F1 to get Help.	Chg //
Figure 4	

Set the DCP name and the device number in the properties of the EKS Profinet. The default name "EKS-PN" and the device number 1 are used in this example.

	•	
Properties - EKS-PN		X
General Identification		
Short description:	EKS-PN	
	EKS Electronic-Key adapter	*
		~
Order No./ firmware:	106305 / V2.10	
Family:	Euchner EKS	
Device name:	EKS-PN	
GSD file:	GSDML-V2.2-Euchner-EKS-20091105.xml	
	Change Release Number	
<u>Node in PROFINET I</u>	O System	
Device number:	PROFINET-IO-System (100)	
IP address:	192.168.20.111 Ethemet	
Assign IP addres	s via ID controller	
Comment:		
_		*
		-
ОК	Cancel	Help

Figure 5

Subject to technical modifications; no responsibility is accepted for the accuracy of this information. © EUCHNER 2015

An update time of longer than 128 ms must be set in the object properties on the "IO Cycle" tab in the "Interface" slot of the EKS Profinet.

Properties - Interface (X1)			×
General Addresses IO Cycle			
Update Time			
Mode: Fixed factor			
Lipdate time [ms]: 128.000 ▼ 128 ▼	x	Send clock	[ms]
Watchdog Time			
Number of accepted update cycles with missing IO data:		3	-
Watchdog time [ms]:		384.000	
		1	
		Cancel	Help

Figure 6

The alarm settings will not be addressed in this example.

Under the object properties on the "Parameters" tab in the "Read: 128 bytes" slot, it is set that the user data are to be retrieved with a length of 21 bytes from start address 103. The 21 bytes consist of the user data with a length of 13 bytes and the KeylD with a length of 8 bytes. They are therefore retrieved together and stored from data byte 1 in the input range. The status word of the EKS Profinet is located in data byte 0 of the input range.

Properties - Read: 128 bytes - (R-/S1)					
General Addresses Parameters					
· · · · ·			- 1		
	Value		- 1		
Parameters					
—≡ General parameters					
🖻 🔄 General parameters					
☐ Alarm setting	Deactivated				
—≣ Start address	103				
—	21				
,					
ОК		Cancel	Help		
Figure 7					
iguit /					

EUCHNER More than safety.

Programming in the control system

Global data blocks

A data block is created for saving the received data for the EKS.

The data are created in a structured manner in the data block for reading, with all data items longer than one byte being created as individual bytes to circumvent the even-numbered alignment in the control system. The data block must be the same length as the input range of the EKS, otherwise the system function for reading will not work.

DB1, ReadBufferEKS

Address	Name	Туре	Initial valu	Comment
0.0		STRUCT		
+0.0	ReadEKSStatus	BYTE	B#16#0	Statusbyte from EKS
+1.0	ReadKeyCount	BYTE	B#16#0	Counter for keys
+2.0	ReadStartAddress	BYTE	B#16#0	First byte
+3.0	ReadNumberBytes	BYTE	B#16#0	Number of bytes read
+4.0	ReadCRC_00	BYTE	B#16#0	CRC Byte 0
+5.0	ReadCRC_01	BYTE	B#16#0	CRC Byte 1
+6.0	ReadDate_00	BYTE	B#16#0	Date Byte O
+7.0	ReadDate_01	BYTE	B#16#0	Date Byte 1
+8.0	ReadDate_02	BYTE	B#16#0	Date Byte 2
+9.0	ReadDate_03	BYTE	B#16#0	Date Byte 3
+10.0	ReadDate_04	BYTE	B#16#0	Date Byte 4
+11.0	ReadDate_05	BYTE	B#16#0	Date Byte 5
+12.0	ReadDate_06	BYTE	B#16#0	Date Byte 6
+13.0	ReadDate_07	BYTE	B#16#0	Date Byte 7
+14.0	ReadAuthorization_00	BYTE	B#16#0	Access Level Byte 0
+15.0	ReadAuthorization_01	BYTE	B#16#0	Access Level Byte 1
+16.0	ReadDepartment	BYTE	B#16#0	Department
+17.0	ReadKeyID_00	BYTE	B#16#0	KeyID Byte 0
+18.0	ReadKeyID_01	BYTE	B#16#0	KeyID Byte 1
+19.0	ReadKeyID_02	BYTE	B#16#0	KeyID Byte 2
+20.0	ReadKeyID_03	BYTE	B#16#0	KeyID Byte 3
+21.0	ReadKeyID_04	BYTE	B#16#0	KeyID Byte 4
+22.0	ReadKeyID_05	BYTE	B#16#0	KeyID Byte 5
+23.0	ReadKeyID_06	BYTE	B#16#0	KeyID Byte 6
+24.0	ReadKeyID_07	BYTE	B#16#0	KeyID Byte 7
+26.0	Buffer	ARRAY[05]		NC for filling up to 32 bytes
*1.0		BYTE		
=32.0		END_STRUCT		

Figure 8

DB10, instance module for FB1

As the function module FB1 operates with static variables, a DB must be used as an instance module. In the example, DB10 is created for this purpose.

STL program for retrieving the Electronic-Key content

The reading program is programmed in FB1 in this example. The program reads only when an Electronic-Key is inserted and new data are ready. An Electronic-Key that has been read in once will not be read in again. The data from byte 103 (KeyCRC), including the KeyID, are read and are provided in data block DB1 from byte 1 for further processing. 21 bytes of user data in total are retrieved from the EKS Electronic-Key.

The status bye of EKS is saved in byte 0 DB1.

Description of the interface

Input data

None.

Output data

Error message, new Electronic-Key and status of the DP slave.

Input/output data

None.

Static data

The KeyRead marker is created statically. This marker identifies whether an Electronic-Key has already been completely read one time. Data are retrieved only if the marker is not set. The marker is reset whenever there is no longer an Electronic-Key in the EKS.

Temporary data

None.

Name	Data type	Address	Start value	Comment
IN		0.0		
OUT		0.0		
Error	Bool	0.0	FALSE	Error message
NewKey	Bool	0.1	FALSE	New key read
DPStatus	Word	2.0	W#16#0	Status of DP Slave
IN_OUT		0.0		
STAT		0.0		
KeyCount	Byte	4.0	B#16#0	Counter of plugged key
CycleMarker	Int	6.0	0	Sequence counter of program
TEMP		0.0		

Figure 9

Changed registers

A1, A2, SW

Unchanged registers

AR1, AR2, DBR1, DBR2

System functions used

SFC14, DPRD_DAT - read standard DP slaves/PROFINET IO devices

Global data

Data block DB1 with a minimum size of 128 bytes is assumed. The content of data block DB1 is completely overwritten.

EUCHNER More than safety.

Symbol table

	Status	Symbol /	Address	Data type	Comment
1		Calculate CRC	FB 2	FB 2	
2		COMPLETE RESTART	OB 100	OB 100	Complete Restart
3		Data FB1	DB 10	FB 1	
4		Data FB2	DB 11	FB 2	
5		DIS_AIRT	SFC 41	SFC 41	Delay the Higher Priority Interrupts and Asynchronous Errors
6		DPRD_DAT	SFC 14	SFC 14	Read Consistent Data of a Standard DP Slave
7		DPWR_DAT	SFC 15	SFC 15	Write Consistent Data to a Standard DP Slave
8		EKSIn	E 256.1	BOOL	Fla if key plugged
9		EKSInCount	EB 257	BYTE	Counter of EKS
10		EKSMemin	EB 256	BYTE	First byte of input buffer EKS
11		EKSMemOut	AB 256	BYTE	First byte of output buffer EKS
12		EN_AIRT	SFC 42	SFC 42	Enable Higher Priority Interrupts and Asynchronous Errors
13		F_CTRL_1	FB 273	FB 273	
14		F_CTRL_2	FB 274	FB 274	F_: Test Block an Programm Run Control
15		F_DIAG_N	FB 275	FB 275	F_: Diagnosticbuffer Message with non CPU-Stop
16		F_GLOBDB	DB 545	DB 545	F_: F_Global_Data Block
17		F_IO_CGP	FB 272	FB 272	F_: Driver Block In-Output with Channel Granular Passivation
18		Globaler Speicher	DB 3	DB 3	
19		VO_FLT1	OB 82	OB 82	VO Point Fault 1
20		Main Program	OB 1	OB 1	
21		PROG_ERR	OB 121	OB 121	Programming Error
22		RDSYSST	SFC 51	SFC 51	Read a System Status List or Partial List
23		Read EKS	FB 1	FB 1	
24		ReadBufferEKS	DB 1	DB 1	
25		STP	SFC 46	SFC 46	Change the CPU to STOP
26		VAT_1	VAT 1		
27		VAT_2	VAT 2		
28		WriteBufferEKS	DB 2	DB 2	

Figure 10

STL program in FB1- ReadEKS

//Retrieval of data from the EKS Electronic-Key

```
// Check of whether an Electronic-Key was inserted, and data retrieval only if this is the case
     IJ
           "EKSIn"
                                       // Check whether an Electronic-Key is inserted
     SPB
           MKEY
                                       // If inserted, check whether data have already been retrieved
     R
           #KeyRead
                                       // Mark that a new Electronic-Key can now come
     SPA
          MRET
// Electronic-Key is inserted
// Check whether the Electronic-Key is new
MKEY: U #KeyRead
                                      // If KeyRead is set, this Electronic-Key has already been read
     SPBN MRD
                                       // Retrieve data only from new Electronic-Key
// No new Electronic-Key inserted, no error
MRET: R
                                       // Feedback, no error
           #Error
     R
           #NewKey
                                       // Feedback, no Electronic-Key
     ΒE
Figure 11a
// Reading of data from EKS into DB1
MRD: CALL "DPRD_DAT"
                                       // Call of SFC 14 DPRD_DAT
      LADDR :=W#16#100
                                       // Address of the EKS memory range
      RET_VAL:=MW1
                                       // Feedback
      RECORD := P#DB1.DBX0.0 BYTE 128
                                      // Start address of the DB for reception, length must be 32
// Check whether an error occurred
     L
           MW
                  1
     L
                                       // Only return value 0 is OK
           0
      ==I
     SPBN MERR
                                       // If a value <> 0 was returned in marker word 1: error
// Electronic-Key read completely, the data are now in DB1
         #KeyRead
                                       // Note that reading was complete with this counter value
     S
                                       // Report back that a new Electronic-Key was read completely
      S
           #NewKey
                                       // No errors
     R
           #Error
     BE
Figure 11b
```

```
EUCHNER
More than safety.
```

```
// Error processing

MERR: L MW 1

T #DPStatus

S #Error

R #NewKey

BE

Figure 11c
```

FB1 call

```
//Retrieval of data from the EKS Electronic-Key
CALL "Read EKS", "Data FB1"
Error :=M0.0 // Return value for error
NewKey :=M0.1 // Return value, whether new Electronic-Key
DPStatus:=#Status // Status of the DP slave
U M 0.0 // Check whether error occurred
SPB MERR // If values = 1, jump to error routine
Figure 12
```

// DP status as feedback in case of error

// Return value = 1, error occurred

Important note - please observe carefully!

This document is intended for a design engineer who possesses the requisite knowledge in safety engineering and knows the applicable standards, e.g. through training for qualification as a safety engineer. Only with the appropriate qualification is it possible to integrate the introduced example into a complete safety chain.

The example represents only part of a complete safety chain and does not fulfill any safety function on its own. In order to fulfill a safety function, the energy switch-off function for the hazard location and the software within the safety evaluation must also be considered, for example.

The introduced applications are only examples for solving certain safety tasks for protecting safety doors. The examples cannot be comprehensive due to the application-dependent and individual protection goals within a machine/installation.

If questions concerning this example remain open, please contact us directly.

In accordance with Machinery Directive 2006/42/EC, the design engineer of a machine or installation is obligated to perform a risk assessment and take measures to reduce the risk. When doing this, the engineer must comply with the applicable national and international standards. Standards generally represent the current state of the art. Therefore, the design engineer should continuously inform himself about changes in the standards and adapt his considerations to them. Relevant standards include EN ISO 13849 and EN 62061. This application must be regarded only as assistance for the considerations about safety measures.

The design engineer of a machine/installation is obligated to assess the safety technology itself. The examples must not be used for assessment, because only a small excerpt of a complete safety function was considered in terms of safety engineering here.

In order to be able to use the safety switch applications correctly on safety doors, it is indispensable to observe the standards EN ISO 13849-1, EN ISO 14119 and all relevant C-standards for the respective machine type. Under no circumstances does this document replace the engineer's own risk assessment, and it cannot serve as the basis for a fault assessment.

Particularly in case of fault exclusion, it must be noted that this can be performed only by the design engineer of a machine or installation and requires a reason. General fault exclusion is not possible. More information about fault exclusion can be found in EN ISO 13849-2.

Changes to products or within assemblies from third-party suppliers used in this example can lead to the function no longer being ensured or the safety assessment having to be adapted. In any event, the information in the operating instructions on the part of EUCHNER, as well as on the part of third-party suppliers, must be used as the basis before this application is integrated into an overall safety function. If contradictions should arise between the operating instructions and this document, please contact us directly.

Use of brand names and company names

All brand names and company names stated are the property of the related manufacturer. They are used only for the clear identification of compatible peripheral devices and operating environments in relation to our products.

Subject to technical modifications; no responsibility is accepted for the accuracy of this information. © EUCHNER 2015