EUCHNER

Operating Instructions

Contents

1. About this document 5
1.1. Scope 5
1.2. Target group 5
1.3. Key to symbols. 5
1.4. Supplementary documents 5
2. Correct use 6
3. Description of the safety function 7
4. Exclusion of liability and warranty 8
5. General safety precautions 8
6. Function 9
6.1. Guard lock monitoring 9
6.2. Monitoring outputs/status bits 9
6.2.1. Guard locking signal OL 9
6.2.2. Door position signal OD 9
6.2.3. Diagnostic signal 0 I 9
6.2.4. Escape release signal OER 9
6.2.5. Status signal OM. 9
6.2.6. Locking element signal OLS. 10
6.2.7. Communication connection C 10
6.3. Version CTP/CTA Extended. 10
6.4. Guard locking 10
6.4.1. Guard locking on version CTP/CTA-L1 10
6.4.2. Guard locking on version CTP/CTA-L2. 10
6.4.3. Guard locking on version CTP/CTA-L1 and control via IO-Link communication 11
6.4.4. Guard locking on version CTP/CTA-L2 and control via IO-Link communication. 11
6.5. Switching states 12
6.5.1. Switching states on version CTP/CTA-L1/L2 12
6.5.2. Switching states on version CTP/CTA-L1/L2 with control via IO-Link communication 12
7. Manual release 13
7.1. Auxiliary release and auxiliary key release 13
7.1.1. Actuating auxiliary release 13
7.1.2. Actuating auxiliary key release 14
7.2. Emergency release 14
7.2.1. Actuating emergency release 14
7.3. Escape release. 15
7.3.1. Actuating escape release 15
7.4. Wire front release (bowden) 15
7.4.1. Laying wire front release 16
8. Changing the approach direction 16
9. Mounting 17
10. Electrical connection 18
10.1. Notes about © (4) us 19
10.2. Safety in case of faults. 19
10.3. Fuse protection for power supply 19
10.4. Requirements for connecting cables 20
10.5. Connector assignments 21
10.5.1. Connector assignment of safety switches CTP/CTA-...BR-...-SAB- with plug connectors $2 \times \mathrm{M} 12$. 21
10.5.2. Connector assignment of safety switches CTP/CTA-...-BR-...-SA-.. with plug connector M12, 8-pin 21
10.5.3. Connector assignment of safety switches CTP/CTA-...-BR-...-APD-SA-... with plug connector M12, 8-pin 21
10.5.4. Connector assignment of safety switches CTP/CTA-...-BR-...-SH-... with plug connector M23 (RC18) 22
10.6. Connection of guard locking control 23
10.6.1. Guard locking control for variants with IMM connection 23
10.6.2. Guard locking control for variants without IMM connection. 23
10.6.3. Guard locking control for variants with UA connection 23
10.7. Notes on operation with safe control systems 24
10.8. Connection without and with IO-Link communication. 24
10.8.1. Series connection without IO-Link communication 24
10.8.2. Series connection with IO-Link communication. 24
11. Connection of a single CTP/CTA-BR (separate operation). 25
12. Connection of several devices in a switch chain (series connection) 26
12.1. Series connection with wiring in the control cabinet 27
12.2. Series connection with Y-distributors 28
12.2.1. Maximum cable lengths 28
12.2.2. Determining cable lengths using the example table. 29
12.2.3. Connector assignment of Y-distributor for series connection without IO-Link communication 30 30
12.2.4. Connector assignment of Y -distributor for series connection with IO-Link communication 32
13. Using communication data 34
13.1. Connection to a BR/IO-Link Gateway GWY-CB. 34
13.2. Connection to a safety relay ESM-CB 34
13.3. Overview of the communication data 34
13.3.1. Cyclical data (process data) 34
13.3.2. Acyclical data (device data and events) 35
14. Setup 36
14.1. LED displays 36
14.2. Teaching-in actuator (only for unicode evaluation) 36
14.3. Functional check. 37
14.3.1. Mechanical function test 37
14.3.2. Electrical function test. 37
14.4. Factory reset 37
15. System status table CTP/CTA-L1/2-BR 38
16. Technical data 39
16.1. Technical data for safety switch CTP-L1/2-BR 39
16.2. Technical data for safety switch CTA-L1/2-BR. 40
16.3. Typical system times 42
16.4. Radio frequency approvals 43
16.5. Dimension drawing for safety switch CTP/CTA. 44
16.5.1. Dimension drawing for safety switch CTP 44
16.5.2. Dimension drawing for safety switch CTA. 45
16.5.3. Dimension drawing for connections and variants CTP/CTA 46
16.6. Technical data for actuator CTP/CTA- 47
16.6.1. Dimension drawing for actuator CTP/CTA- 48
17. Ordering information and accessories 51
18. Inspection and service 51
19. Service 51
20. Declaration of conformity 51

1. About this document

1.1. Scope

These operating instructions, the document Safety information and any available data sheet form the complete user information for your device.

They apply to:

Safety switch	Version
CTP-L1/2-BR	V1.0.X up to V1.3.X
CTA-L1/2-BR	V1.0.X up to V2.1.X

Devices with lower product versions or without a version number are not described by these operating instructions. In this case, you should contact the Service department (see chapter 19. Service on page 51).

1.2. Target group

Design engineers and installation planners for safety devices on machines as well as setup and servicing staff possessing special expertise in handling safety components.

1.3. Key to symbols

Symbol/depiction	Meaning
\square	Printed document
(www)	Document is available for download at www.euchner.com
DANGER WARNING CAUTION	Safety precautions Danger of death or severe injuries Warning about possible injuries Caution slight injuries possible
NOTICE Important!	Notice about possible device damage Important information
Tip	Useful information

1.4. Supplementary documents

The overall documentation for this device consists of the following documents:

| Document title
 (document number) | Contents | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Safety information
 (2525460) | Basic safety information | |
| Operating instructions
 (2537376) | (this document) | |
| Possibly available data
 sheet | Item-specific information about deviations or additions | |

Important!

Always read all documents to gain a complete overview of safe installation, setup and use of the device. The documents can be downloaded from www.euchner.com. For this purpose enter the doc. no. in the search box.

2. Correct use

Safety switches series CTP-L1/2 \ldots and CTA-L1/2 \ldots are interlocking devices with guard locking solenoid (type 4). The device meets the requirements according to EN IEC 60947-5-3. Devices with unicode evaluation possess a high coding level, devices with multicode evaluation possess a low coding level.
In combination with a movable guard and the machine control, this safety component prevents the guard from being opened while a dangerous machine function is being performed.
This means:

- Starting commands that cause a dangerous machine function must become active only when the guard is closed and locked.
- The guard locking must not be released until the dangerous machine function has ended.
- Closing and locking a guard must not cause automatic starting of a dangerous machine function. A separate start command must be issued. For exceptions, refer to EN ISO 12100 or relevant C-standards.

Devices from this series are also suitable for process protection.
Before the device is used, a risk assessment must be performed on the machine, e.g. in accordance with the following standards:
, EN ISO 13849-1

- EN ISO 12100
- IEC 62061

Correct use includes observing the relevant requirements for installation and operation, particularly based on the following standards:
, EN ISO 13849-1

- EN ISO 14119
- EN 60204-1

The safety switch is allowed to be operated only in conjunction with the intended EUCHNER actuator and the related connection components from EUCHNER. On the use of different actuators or other connection components, EUCHNER provides no warranty for safe function.
Connection of several devices in a BR switch chain is permitted only using devices intended for series connection in a BR switch chain. Check this in the instructions of the device in question.

The user is responsible for the proper integration of the device into a safe overall system. For this purpose, the overall system must be validated, e.g. in accordance with EN ISO 13849-2.
It is only allowed to use components that are permissible in accordance with the table below.

Table 1: Possible combinations for CTP/CTA components

3. Description of the safety function

Devices from this series feature the following safety functions:

Monitoring of guard locking and the position of the guard

(interlocking device with guard locking according to EN ISO 14119)

- Safety function (see chapter 6.5. Switching states on page 12):
- The safety outputs are switched off when guard locking is released (monitoring of the locking element).
- The safety outputs are switched off when the guard is open (monitoring of the door position).
- Guard locking can be activated only when the actuator is located in the switch head (prevention of inadvertent locking position (faulty closure protection)).
- The following additionally applies in a BR series connection: the safety outputs are switched on only when the device receives a corresponding signal from its predecessor in the chain.
- Safety characteristics: category, Performance Level, PFH $_{D}$ (see chapter 16. Technical data on page 39).

NOTICE

You can regard the complete BR device chain as one subsystem during calculation. The following calculation method applies to the PFH_{D} value:

BR-Device \#1 ... n External Evaluation

Alternatively, the simplified method according to section 6.3 of EN 13849-1:2015 can be used for calculation.

Control of guard locking for variants with IMP/IMM connection

If the device is used as guard locking for personnel protection, control of guard locking must be regarded as a safety function.
The device does not feature a safety characteristic for control of guard locking, because the guard locking solenoid is completely disconnected from outside the device (no control function within the device). It therefore does not contribute to the failure probability.
The safety level for control of guard locking is defined only by the external control (e.g. $\mathrm{PFH}_{\mathrm{D}}$, ext. for the standstill monitor).

Control of guard locking via IO-Link communication

If the device is used as guard locking for personnel protection, control of guard locking must be regarded as a safety function. The device does not feature a safety characteristic for the control of the guard locking.

4. Exclusion of liability and warranty

In case of failure to comply with the conditions for correct use stated above, or if the safety regulations are not followed, or if any servicing is not performed as required, liability will be excluded and the warranty void.

5. General safety precautions

Safety switches fulfill personnel protection functions. Incorrect installation or tampering can lead to fatal injuries to personnel.
Check the safe function of the safeguard particularly

- after any setup work
- after the replacement of a system component
- after an extended period without use
- after every fault

Independent of these checks, the safe function of the safeguard should be checked at suitable intervals as part of the maintenance schedule.

WARNING
Danger to life due to improper installation or due to bypassing (tampering). Safety components fulfill a personnel protection function.
- Safety components must not be bypassed, turned away, removed or otherwise rendered ineffective.
On this topic pay attention in particular to the measures for reducing the possibility of bypassing according to EN ISO 14119:2013, section 7.
- The switching operation must be triggered only by actuators designated for this purpose.
- Prevent bypassing by means of replacement actuators (only for multicode evaluation). For this purpose, restrict access to actuators and to keys for releases, for example.
- Mounting, electrical connection and setup only by authorized personnel possessing the following knowledge:
- specialist knowledge in handling safety components
- knowledge about the applicable EMC regulations
- knowledge about the applicable regulations on operational safety and accident prevention

Important!

Prior to use, read the operating instructions and keep these in a safe place. Ensure the operating instructions are always available during mounting, setup and servicing. For this reason you should archive a printed copy of the operating instructions. You can download the operating instructions from www.euchner.com.

6. Function

The device permits the locking of movable guards.
The system consists of the following components: coded actuator (transponder) and switch.
Whether the device learns the complete actuator code (unicode) or not (multicode) depends on the respective version.
, Devices with unicode evaluation: The actuator must be assigned to the safety switch by a teach-in operation so that it is detected by the system. This unambiguous assignment ensures a particularly high level of protection against tampering. The system thus possesses a high coding level.

- Devices with multicode evaluation: Unlike systems with unicode evaluation, on multicode devices a specific code is not requested but instead it is only checked whether the actuator is of a type that can be detected by the system (multicode evaluation). There is no exact comparison of the actuator code with the taught-in code in the safety switch (unicode evaluation). The system possesses a low coding level.

When the guard is closed, the actuator is moved into the safety switch. When the operating distances are reached, power is supplied to the actuator by the switch and data are transferred.

If a permissible code is detected, the safety outputs are switched on.
The safety outputs are switched off when the guard is released.
In the event of a fault in the safety switch, the safety outputs are switched off and the DIA LED illuminates red. The occurrence of faults is detected at the latest on the next demand to close the safety outputs (e.g. on starting).

6.1. Guard lock monitoring

All versions feature two safe outputs for monitoring guard locking. The safety outputs F01A and F01B are switched off when guard locking is released.

6.2. Monitoring outputs/status bits

Depending on version, the signals listed in the following are available as a status bit or at the monitoring output. The status bits are evaluated via the BR/IO-Link Gateway. Please refer to the corresponding data sheet for further information.

6.2.1. Guard locking signal OL

The guard locking signal is present if the guard locking is active.

6.2.2. Door position signal OD

The door position signal is sent as soon as the actuator is inserted into the switch head (state: guard closed and not locked). The signal is also present if the guard locking is active.

6.2.3. Diagnostic signal OI

The diagnostic signal is present if there is an error (switch-on condition as for DIA LED).

6.2.4. Escape release signal OER

The escape release signal is present if the device has been released manually (see chapter 7. Manual release on page 13). The signal is reset if the guard locking is re-activated or the reset function has been activated.

6.2.5. Status signal $O M$

The status signal is present if the device's safety outputs are switched.

6.2.6. Locking element signal OLS

The locking element signal is present if the locking element is stuck and it is not possible to deactivate guard locking. The signal is reset as soon as the actuator is no longer under tensile stress.

6.2.7. Communication connection \mathbf{C}

A monitoring output with the suffix C has the additional function of providing a communication connection to a BR/IO-Link Gateway. The switch delivers cyclical and acyclical data. You will find an overview of the communication data in chapter 13. Using communication data on page 34.
If no BR/IO-Link Gateway is connected, this output behaves like a monitoring output.

6.3. Version CTP/CTA Extended

Devices in the Extended version contain additional controls/indicators in the housing cover. Please refer to the corresponding data sheet for further information.

6.4. Guard locking

6.4.1. Guard locking on version CTP/CTA-L1

(guard locking actuated by spring force and released by power-ON)
Activating guard locking: close guard; no voltage at the solenoid.
Releasing guard locking: apply voltage to the solenoid.
The spring-operated guard locking functions in accordance with the closed-circuit current principle. If the voltage is interrupted at the solenoid, the guard locking remains active and the guard cannot be opened directly.

Important!

If the guard is open when the power supply is interrupted and is then closed, guard locking is activated. This can lead to persons being locked in unintentionally.

The actuator cannot be pulled out of the switch and the guard is locked as long as the guard locking pin is extended. If a voltage is applied to the guard locking solenoid, the guard locking pin is retracted and the actuator is released. The guard can be opened.

6.4.2. Guard locking on version CTP/CTA-L2

(guard locking actuated by power-ON and released by spring force)

$\mathbf{1}$	Important! Use as guard locking for personnel protection is possible only in special cases, after strict assessment of the accident risk (see EN ISO 14119:2013, section 5.7.1)!

Activating guard locking: apply voltage to the solenoid.
Releasing guard locking: disconnect voltage from the solenoid.
The magnetically actuated guard locking operates in accordance with the open-circuit current principle. If the voltage is interrupted at the solenoid, the guard locking is released and the guard can be opened directly!
The guard can be opened as long as no voltage is applied to the guard locking solenoid.
If a voltage is applied to the guard locking solenoid, the guard locking pin is held in the extended position and the guard is locked.

6.4.3. Guard locking on version CTP/CTA-L1 and control via IO-Link communication

Important!

Use as guard locking for personnel protection is possible only in special cases, after strict assessment of the accident risk (see EN ISO 14119:2013, section 5.7.1)!

Activating guard locking: guard locking activated by spring force and controlled by bit CL (bit CL=0).
Releasing guard locking: guard locking released by the device's operating voltage and deactivated by bit CL (bit CL = 1).
The spring-operated guard locking functions in accordance with the closed-circuit current principle. If operating voltage is interrupted, guard locking remains active and the guard cannot be opened directly.

Important!

If the guard is open when the power supply is interrupted and is then closed, guard locking is activated. This can lead to persons being locked in unintentionally.

The actuator cannot be pulled out of the switch and the guard is locked as long as the guard locking pin is extended.
If operating voltage is applied, the guard locking pin is controlled by the bit CL and the actuator is released. The guard can be opened.

6.4.4. Guard locking on version CTP/CTA-L2 and control via IO-Link communication

Important!

Use as guard locking for personnel protection is possible only in special cases, after strict assessment of the accident risk (see EN ISO 14119:2013, section 5.7.1)!

Activating guard locking: guard locking supplied by the device's operating voltage and controlled by bit CL (bit CL=1). Releasing guard locking: guard locking released by spring force and deactivated by bit CL (bit CL=0).
The magnetically actuated guard locking operates in accordance with the open-circuit current principle. If the operating voltage is interrupted, the guard locking is released and the guard can be opened directly!

The guard can be opened as long as no operating voltage is applied.
If the operating voltage is applied, the guard locking pin is controlled by the bit CL and the guard is locked.

6.5. Switching states

The detailed switching states for your switch can be found in the system status table (see chapter 15 . System status table CTP/CTA-L1/2-BR on page 38). All safety outputs, signals and display LEDs are described there.

6.5.1. Switching states on version CTP/CTA-L1/L2

	Guard closed and locked	Guard closed and not locked	Guard open
Voltage at guard locking solenoid CTP/CTA-L1	off	on	(irrelevant)
Voltage at guard locking solenoid CTP/CTA-L2	on	off	(irrelevant)
Safety outputs F01A and F01B \checkmark	on	off	off
Guard locking signal OL	on	off	off
Door position signal OD	on	on	off

6.5.2. Switching states on version CTP/CTA-L1/L2 with control via IO-Link communication

	Guard closed and locked		Guard closed and not locked		Guard op
Auxiliary voltage* at guard locking solenoid CTP/CTA-L1	on	off*			irrelevant
Bit CL	0	irrelevant			
Auxiliary voltage* at guard locking solenoid CTP/CTA-L2			on	off*	irrelevant
Bit CL			0	irrelevant	
Safety outputs F01A and F01B					off
Guard locking signal OL					off
Door position signal OD					off

[^0]
7. Manual release

Some situations require the guard locking to be released manually (e.g. malfunctions or an emergency). A function test must be performed after release.
More information on this topic can be found in the standard EN ISO 14119:2013, section 5.7.5.1. The device can feature the following release functions:

7.1. Auxiliary release and auxiliary key release

In the event of malfunctions, the guard locking can be released with the auxiliary release or the auxiliary key release irrespective of the state of the solenoid.
The safety outputs are switched off when the auxiliary release or the auxiliary key release is actuated. Use the safety outputs to generate a stop command.
The guard locking signal OL is switched off; the door position signal OD can assume an undefined state. Open the guard and close it again after resetting the auxiliary release or auxiliary key release. The device will then operate normally again.

(i) | - Important! |
| :--- |
| , The actuator must not be under tensile stress during manual release. |
| lo prevent tampering, the auxiliary release must be sealed (with sealing |
| lacquer, for example) before the switch is set up. |
| sfter use, reset the auxiliary release and screw in and seal the locking |
| screw sealing lacquer, for example). |
| The auxiliary key release must not be used to lock the switch during |
| servicing to prevent activation of guard locking, for example. |
| , Loss of the release function due to mounting errors or damage during |
| mounting. |
| - Check the release function every time after mounting. |
| , Observe the notes on any available data sheets. |

7.1.1. Actuating auxiliary release

1. Unscrew locking screw.
2. Using a screwdriver, turn the auxiliary release to σ in the direction of the arrow.
\Rightarrow Guard locking is released.

7.1.2. Actuating auxiliary key release

On devices with auxiliary key release (can be retrofitted), simply turn the key to release. Function as for auxiliary release. For mounting, see the auxiliary key release supplement.

7.2. Emergency release

This permits opening of a locked guard from outside the danger zone without tools. For mounting, see the mounting supplement.

Important!

It must be possible to operate the emergency release manually from outside the protected area without tools.

- The emergency release must possess a marking indicating that it may be used only in an emergency.
- The actuator must not be under tensile stress during manual release.
- The emergency release must be sealed or the misuse of the release function must be prevented in the control system.
- The release function meets all other requirements from EN ISO 14119.
- The emergency release meets the requirements of Category B according to EN ISO 13849-1:2015.
, Loss of the release function due to mounting errors or damage during mounting.
- Check the release function every time after mounting.

Observe the notes on any available data sheets.

7.2.1. Actuating emergency release

- Turn the emergency release clockwise until it clicks into place.
\Rightarrow Guard locking is released.
To reset, press the snap-in bolt inward using a small screwdriver or similar tool and turn the emergency release back.
The safety outputs are switched off when the emergency release is actuated. Use the safety outputs to generate a stop command.
The guard locking signal OL is switched off; the door position signal OD can assume an undefined state. Open the guard and close it again after resetting the emergency release. The device will then operate normally again.

7.3. Escape release

The escape release is optional on CTP devices; on CTA devices it is optional or can be retrofitted.
This permits opening of a locked guard from the danger zone without tools (see chapter 16.5.1. Dimension drawing for safety switch CTP... on page 44).
(i) Important!

It must be possible to operate the escape release manually from inside the protected area without tools.
It must not be possible to reach the escape release from the outside.
The actuator must not be under tensile stress during manual release.
The escape release meets the requirements of Category B according to EN ISO 13849-1:2015.

7.3.1. Actuating escape release

- Press the red release knob to the end stop.
\Rightarrow Guard locking is released.
Pull the knob out again to reset.
The safety outputs are switched off when the escape release is actuated. Use the safety outputs to generate a stop command.
The guard locking signal OL is switched off; the door position signal OD can assume an undefined state. Open the guard and close it again after resetting the escape release. The device will then operate normally again.

7.4. Wire front release (bowden)

Release via a pull wire. Depending on the type of attachment, the wire front release can be used as an emergency release or escape release.
The following applies to non-latching wire front releases.
If the release is to be used as an emergency release, one of the following measures must be taken (see EN ISO 14119:2013, section 5.7.5.3):

- Install the release so that it can be reset only with the aid of a tool.
- Alternatively, resetting can be realized at the control-system level by means of a plausibility check (status of the safety outputs does not match the guard locking control signal), for example.
The emergency-release specifications in chapter 7.2 on Page 14 apply irrespective of this information.

Important!

- The wire front release meets the requirements of Category B according to EN ISO 13849-1:2015.
- The correct function depends on the laying of the pull wire and the attachment of the pull handle. The plant manufacturer is responsible for proper installation; the notes from chapter 7.4.1 on Page 16 must be observed.
The actuator must not be under tensile stress during manual release.

7.4.1. Laying wire front release

Important!

- Loss of the release function due to mounting errors, damage or wear.
- Check the release function every time after mounting.
- When routing the wire front release, ensure that it operates smoothly.
- Observe the min. bending radius (100 mm) and minimize the number of bends.
- The switch is not allowed to be opened.
- Please observe the notes on the corresponding data sheets.

8. Changing the approach direction

The approach direction needs to be changed only if the switch is to be approached from the rear.
Proceed as follows:

1. Remove the screws from the safety switch.
2. Set the required direction.
3. Tighten the screws with a torque of 1.2 Nm .

Fig. 1: Changing the approach direction

9. Mounting

\}	CAUTION
	Safety switches must not be bypassed (bridging of contacts), turned away, removed or otherwise rendered ineffective. - Observe EN ISO 14119:2013, section 7, for information about reducing the possibilities for bypassing an interlocking device.
\}	CAUTION
	Risk of damage to equipment and malfunctions as a result of incorrect installation. - Safety switches and actuators must not be used as an end stop. - Observe EN ISO 14119:2014, sections 5.2 and 5.3, for information about mounting the safety switch and the actuator. The following specifications must be observed: - Mounting with screws of property class 8.8 or higher. - The minimum screw diameter for CTP devices is 4 mm , for CTA devices 5 mm . - Secure the fixing material against loosening (e.g. by means of medium-strength positive screw locking). - Protect the switch head against damage, as well as penetrating foreign objects such as swarf, sand and blasting shot, etc. - Observe the min. door radii (see chapter 16.6.1. Dimension drawing for actuator CTP/CTA-... on page 48). - Observe the tightening torque for mounting the switch: - For CTP devices: max. 1.4 Nm - For CTA devices: max. 6 Nm
¢	CAUTION
	Device damage or malfunctions caused by material changes due to the environment. - In accordance with section 6.3 of EN ISO 14119:2014, the environmental influences (e.g. direct UV radiation or corrosion) must be checked before a guard locking device is used. - Contact the manufacturer if you have any questions about environmental influences or about use in aggressive environments.

A clearance of 12 mm must be maintained around the actuator head (see Fig. 2).

Fig. 2: Actuator head clearance

10. Electrical connection

The following connection options are available:

- Separate operation
- Series connection with Y-distributors or passive distribution modules
- Series connection, e.g. with wiring in the control cabinet
- Connection to a BR/IO-Link Gateway GWY-CB-1-BR-IO
- Connection to a safety relay ESM-CB with integrated BR/IO-Link Gateway

WARNING	
In the event of a fault, loss of the safety function due to incorrect connection.	
$=$ To ensure safety, both safety outputs FO1A and FO1B must always be evaluated.	
r Monitoring outputs must not be used as safety outputs.	
	Lay the connecting cables with protection to prevent the risk of short circuits.

CAUTION

Risk of damage to equipment or malfunctions as a result of incorrect connection.

- In devices with IMP/IMM inputs, the power supply for the evaluation electronics is separate from the power supply for the guard locking solenoid.
- Do not use a control system with pulsing or switch off the pulsing function in your control system.

The device generates its own test pulses on the safety outputs. A downstream control system must tolerate these test pulses, which may have a length of up to $300 \mu \mathrm{~s}$.
Depending on the inertia of the downstream device (control system, relay, etc.), this can lead to short switching processes.
The test pulses are output only with the safety outputs switched off during device start.
The inputs on an evaluation unit connected must be positive-switching, as the two outputs on the safety switch deliver a level of +24 V in the switched-on state.
All the electrical connections must either be isolated from the mains supply by a safety transformer according to IEC 61558-2-6 with limited output voltage in the event of a fault, or by other equivalent insulation measures (PELV).
All electrical outputs must have an adequate protective circuit for inductive loads. The outputs must be protected with a free-wheeling diode for this purpose. RC interference suppression units must not be used.
Power devices which are a powerful source of interference must be installed in a separate location away from the input and output circuits for signal processing. The cable routing for safety circuits should be as far away as possible from the cables of the power circuits.
To avoid EMC interference, the physical environmental and operating conditions at the installation site of the device must comply with the requirements according to the standard EN 60204-1 (EMC). Pay attention to any interference fields from devices such as frequency converters or induction heating systems. Observe the EMC instructions in the manuals from the respective manufacturer.

Important!

If the device does not appear to function when operating voltage is applied (e.g. green STATE LED does not flash), the safety switch must be returned unopened to the manufacturer.

10.1. Notes about (M)

(i) Important!

This device is intended to be used with a Class 2 power source in accordance with UL1310.(0)w
As an alternative an LV/C (Limited Voltage/Current) power source with the following properties can be used:

- This device shall be used with a suitable isolating source in conjunction with a fuse in accordance with UL248. The fuse shall be rated max. 3.3 A and be installed in the 30 V DC power supply to the device as per the UL requirements.(0)w Please note possibly lower connection ratings for your device (refer to the technical data).
For use and application as per the requirements of UL ${ }^{11}$ a connecting cable listed under the UL category code CYJV/7, min. 24 AWG, min. $80^{\circ} \mathrm{C}$, must be used.(©)w

10.2. Safety in case of faults

- The operating voltage U_{B} and the solenoid operating voltage $\mathrm{U}_{I M P}$ are reverse polarity protected.
- The safety outputs F01A/F01B are short circuit-proof.
- A short circuit between the safety outputs is detected on starting or when the safety outputs are activated by the device.
- A short circuit in the cable can be excluded by laying the cable with protection.

10.3. Fuse protection for power supply

The power supply must be provided with fuse protection depending on the number of switches and the current required for the outputs. The following rules apply:

Max. current consumption of an individual switch $I_{\text {max }}$
$I_{\text {max }}=I_{U B}+I_{\text {FO1A }}+$ FO1B $+I_{\text {OX }}$
IUB $\quad=$ Switch operating current (40 mA)
lox = Load current of monitoring output (max. 50 mA per monitoring output)
$\mathrm{I}_{\text {F01A }+ \text { F01B }}=$ Load current of safety outputs F01A + FO1B ($2 \times$ max. 150 mA)

If there are further monitoring outputs, their load current must be taken into account.
Max. current consumption of a switch chain $\Sigma I_{\text {max }}$
$\Sigma I_{\text {max }}=I_{\text {F01A }}+$ F01B $+n x\left(l_{U B}+I_{\text {OX }}\right)$
$\mathrm{n} \quad=$ Number of connected switches

10.4. Requirements for connecting cables

CAUTION	Risk of damage to equipment or malfunctions as a result of incorrect connecting cables. , Use connection components and connecting, cables from EUCHNER. On the use of other connection components, the requirements in the following table apply. EUCHNER provides no warranty for safe function in case of failure to comply with these requirements.

Observe the following requirements with respect to the connecting cables:
For safety switches CTP/CTA-...-BR-...-SAB-... with plug connectors $2 \times \mathrm{M} 12$

Parameter	Value	Unit
Conductor cross-section, min.	0.25	$\mathrm{~mm}^{2}$
R max.	60	Ω / km
C max.	120	$\mathrm{nF} / \mathrm{km}$
L max.	0.65	$\mathrm{mH} / \mathrm{km}$
Recommended cable type	LIYY $8 \times 0.25 \mathrm{~mm}^{2}$ or $5 \times 0.34 \mathrm{~mm}^{2}$	

For safety switches CTP/CTA-...-BR-...-SA-... with plug connector M12, 8-pin

Parameter		Value
Conductor cross-section, min.	0.25	$\mathrm{~mm}^{2}$
R max.	60	Ω / km
C max.	120	$\mathrm{nF} / \mathrm{km}$
L max.	0.65	$\mathrm{mH} / \mathrm{km}$
Recommended cable type	LIYY 8 $\times 0.25 \mathrm{~mm}^{2}$	

For safety switches CTP/CTA-...-BR-...-SH-... with plug connector M23 (RC18)

Parameter		Value
Conductor cross-section, min.	0.25	$\mathrm{~mm}^{2}$
R max.	60	Ω / km
C max.	120	$\mathrm{nF} / \mathrm{km}$
L max.	0.65	$\mathrm{mH} / \mathrm{km}$
Recommended cable type	LIFY11Y min. 19-core	

10.5. Connector assignments

10.5.1. Connector assignment of safety switches CTP/CTA-...-BR-...-SAB-... with plug connectors $2 \times \mathrm{M} 12$

| Plug connector
 (view of connection side) | Pin | Designation | Function | Conductor coloring
 of connecting
 cable 1) |
| :---: | :---: | :---: | :---: | :---: | :---: |

1) Only for standard EUCHNER connecting cable
10.5.2. Connector assignment of safety switches CTP/CTA-...-BR-...-SA-... with plug connector M12, 8-pin

Plug connector (view of connection side)	Pin	Designation	Function	Conductor coloring of connecting cable 1)
$1 \times \mathrm{M} 12$	1	Fl1B	Enable input, channel B	WH
	2	UB	Electronics operating voltage, 24 V DC	BN
	3	F01A	Safety output, channel A \downarrow	GN
	4	F01B	Safety output, channel B \checkmark	YE
	5	OD/C	Door position monitoring output/communication	GY
	6	FIIA	Enable input, channel A	PK
	7	OV	Electronics and solenoid operating voltage, 0 V DC	BU
	8	IMP	Solenoid operating voltage, 24 V DC	RD

1) Only for standard EUCHNER connecting cable
10.5.3. Connector assignment of safety switches CTP/CTA-...-BR-...-APD-SA-... with plug connector M12, 8-pin

Plug connector (view of connection side)	Pin	Designation	Function	Conductor coloring of connecting cable 1)
	1	Fl1B	Enable input, channel B	WH
	2	UB	Electronics operating voltage, 24 V DC	BN
	3	F01A	Safety output, channel A \checkmark	GN
	4	F01B	Safety output, channel B - r	YE
	5	OD/C	Door position monitoring output/communication	GY
	6	FIIA	Enable input, channel A	PK
	7	OV	Electronics and solenoid operating voltage, 0 V DC	BU
	8	UA	Solenoid auxiliary voltage 24 V DC (connected internally to UB)	RD

10.5.4. Connector assignment of safety switches CTP/CTA-...-BR-...-SH-... with plug connector M23 (RC18)

Plug connector (view of connection side)	Pin	Designation	Function	Conductor coloring of connecting cable ${ }^{1)}$
	1	IMP	Solenoid operating voltage, 24 V DC	VT
	2	Fl1A	Enable input, channel A	RD
	3	FI1B	Enable input, channel B	GY
	4	F01A	Safety output, channel A \checkmark	RD/BU
M23 (RC18)	5	F01B	Safety output, channel B \downarrow	GN
	6	UB	Electronics operating voltage, 24 V DC	BU
shield spring	7	RST	Reset input	GY/PK
	8	OD/C	Door position monitoring output/communication	GN/WH
	9	01	Diagnostic monitoring output	YE/WH
	10	OL	Guard lock monitoring output	GY/WH
$\left(\begin{array}{ccccc}9 \\ -0 & 0 & 19 & 0 & 0 \\ 0 & 16 & 0 & 14 & 0 \\ 0 & 0 & 0 & \\ 0\end{array}\right)$	11	-	n.c.	BK
$\left(\begin{array}{cccc}80 & 15 & \\ 70 & 0 & 0 \\ 7 & 0_{6} & 0_{5} \\ \hline\end{array}\right.$	12	FE	Functional earth (must be connected to meet the EMC requirements)	GN/VE
	13	-	n.c.	PK
	14	-	n.c.	BN/GY
	15	-	n.c.	BN/YE
	16	-	n.c.	BN/GN
	17	-	n.c.	WH
	18	IMM	Solenoid operating voltage, 0 V DC	YE
	19	OVUB	Electronics operating voltage, 0 V DC	BN

1) Only for standard EUCHNER connecting cable

10.6. Connection of guard locking control

10.6.1. Guard locking control for variants with IMM connection

Fig. 3: Connection example with IMM connection

10.6.2. Guard locking control for variants without IMM connection

Solenoid operating voltage, 24 V DC

Fig. 4: Connection example without IMM connection
10.6.3. Guard locking control for variants with UA connection

Auxiliary voltage* at guard locking solenoid

* In some product variants the auxiliary voltage UA is connected internally to the operating voltage UB.

Fig. 5: Connection example with UA connection

10.7. Notes on operation with safe control systems

Observe the following guidelines for connection to safe control systems:

- Use a common power supply for the control system and the connected safety switches.
- A pulsed power supply must not be used for UB. Tap the supply voltage directly from the power supply unit. If the power supply is connected to a terminal of a safe control system, this output must provide sufficient electrical current.
- Always connect inputs FI1A and FI1B directly to a power supply unit or to outputs FO1A and FO1B of another EUCHNER BR device (series connection). Pulsed signals must not be present at inputs FI1A and FI1B.
- The safety outputs F01A and F01B can be connected to the safe inputs of a control system. Prerequisite: The input must be suitable for pulsed safety signals (OSSD signals, e.g. from light grids). The control system must tolerate test pulses on the input signals. This normally can be set up by parameter assignment in the control system. Observe the notes of the control system manufacturer. For the test pulse duration of your safety switch, refer to chapter 16. Technical data on page 39.
A detailed example of connecting and setting the parameters of the control system is available for many devices at www.euchner.com in the area Downloads/Applications/CTP... or CTA.... The features of the respective device are dealt with there in greater detail.

10.8. Connection without and with IO-Link communication

10.8.1. Series connection without IO-Link communication

Only the safety and monitoring outputs are switched with this connection method.
With a series connection, the safety signals are looped through from device to device.

10.8.2. Series connection with IO-Link communication

If, in addition to the safety function, detailed monitoring and diagnostic data are to be processed, a BR/IO-Link Gateway is required. To poll the communication data from the connected devices, communication connection C is routed to the $\mathrm{BR} /$ IO-Link Gateway.
You will find further information in the operating instructions for your BR/IO-Link Gateway.

11. Connection of a single CTP/CTA-BR (separate operation)

If a single CTP/CTA-BR is used, connect the device as shown in Fig. 6. The monitoring outputs can be routed to a control system.

The following applies to devices with RST input: The switch can be reset using the RST input. To do this, a voltage of 24 V is applied to the RST input for at least 3 s . The RST input must be connected to 0 V if it is not used.
If there is an internal error (see chapter 15 . System status table CTP/CTA-L1/2-BR on page 38), the reset does not work.

Fig. 6: Connection example for separate operation, version with plug connectors $2 x \mathrm{M} 12$

12. Connection of several devices in a switch chain (series connection)

今

WARNING

In the event of a fault, loss of the safety function due to incorrect connection.

- To ensure safety, both safety outputs F01A and F01B must always be evaluated.

(1)	Important! - A BR switch chain may contain a maximum of 20 safety switches. , The example shows only an excerpt that is relevant for connection of the CTP/CTA system. The example illustrated here does not show complete system planning. The user is responsible for safe integration into the everall system. Detailed application examples can be found at www.eucher.com. Simply enter the order number of your switch in the search box. You will find all available connection examples for the device in Downloads. - Make sure you use the correct Y-distributors. See chapter 12.2.3. Connector assignment of Y-dis- tributor for series connection without IO-Link communication on page 30 and chapter 12.2.4. Connector assignment of Y-distributor for series connection with IO-Link communication on page 32.

12.1. Series connection with wiring in the control cabinet

The series connection can be realized via additional terminals in a control cabinet.
The safety outputs are permanently assigned to the respective safety inputs of the downstream switch. F01A must be routed to FI1A and F01B to FI1B. If the connections are interchanged (e.g. FO1A to FI1B), the downstream device will enter the fault state.

Fig. 7: Connection example for series connection with wiring in the control cabinet

12.2. Series connection with Y-distributors

The series connection is shown here based on the example of the version with plug connector M12. The switches are connected one behind the other with the aid of pre-assembled connecting cables and Y-distributors. If a safety door is opened or if a fault occurs on one of the switches, the system shuts down the machine.

12.2.1. Maximum cable lengths

For devices with IMP/IMM inputs, switch chains are permitted up to a maximum overall cable length of 200 m taking into account the voltage drop as a result of the cable resistance (see table below with example data and case example).

n Max. number of switches	$\mathrm{I}_{\text {FO1A/FO1B }}$ (mA) Possible output current per channel F01A/F01B	$I_{1}(m)$ Max. cable length from the last switch to the control system
	10	150
	25	100
5	50	80
	100	50
	150	25
	10	120
	25	90
6	50	70
	100	50
	150	25
	10	70
	25	60
10	50	50
	100	40
	150	25

12.2.2. Determining cable lengths using the example table

Example: 6 switches are to be used in series. Cabling with a length of 40 m is routed from a safety relay in the control cabinet to the last switch (\#6). Cables with a length of 20 m each are connected between the individual safety switches.

Fig. 8: Circuit example with six CES-C07/CTP/CTA-BR-...-SAB
A safety relay is connected downstream that consumes 75 mA at each of the two safety inputs. This operates over the whole temperature range with a voltage of 19.2 V (corresponds to $24 \mathrm{~V}-20 \%$).

All the relevant values can now be determined using the example table:

1. Select the corresponding section in the column n (max. number of switches). In this case: 6 switches.
2. In the column $\mathrm{I}_{\mathrm{FO1A} / \mathrm{FO1B}}$ (possible output current per channel $\mathrm{FO1A} / \mathrm{FO1B}$), find a current greater than or equal to 75 mA . In this case: 100 mA .
\Rightarrow It is then possible to determine the maximum cable length from the last switch (\#6) to the control system from column I_{1}. In this case, a length of 50 m is permitted.

Result: The desired cable length I_{1} of 40 m is below the permitted value from the table. The overall length of the switch chain $I_{\max }$ of 140 m is less than the maximum value of 200 m .
\Rightarrow The planned application is therefore functional in this form.

12.2.3. Connector assignment of Y-distributor for series connection without IO-Link communication

 (only for version with plug connectors $2 \times \mathrm{M} 12$)

Important!

- The switch chain must always be terminated with strapping plug 097645.
- A higher-level control system cannot detect which safety door is open or on which switch a fault has occurred with this connection technology.

Plug connector X1			Y-distributor	Plug connector X2/X3			
X1		X1 Socket			X2		
		Pin			Function		
		X2.1			UB		
Pin	Function				X2.2	F01A	
X1.1	Fl1B				X2.3	0 V	
X1.2	UB				X2.4	F01B	
X1.3	F01A				X2.5	*	
X1.4	F01B		$\begin{aligned} & 5 \\ & 8 \\ & 8 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 111696 \\ & 112395 \end{aligned}$ With connecting cable	X3 Socket	X3	
X1.5	n.c.					Pin	Function
X1.6	Fl1A	X3.1				UB	
X1.7	OVUB	X3.2				FIIA	
X1.8	*	X3.3				0 V	
		X3.4				FI1B	
		X3.5				*	

[^1]

Fig. 9: Connection example for series connection without IO-Link communication

12.2.4. Connector assignment of Y-distributor for series connection with IO-Link communication

 (only for version with plug connectors $2 \times \mathrm{M} 12$)

Important!

- These Y-distributors can be used only with device variants that control guard locking via IO-Link communication.
- The switch chain must always be terminated with strapping plug 097645.

Fig. 10: Connection example for series connection with IO-Link communication

13. Using communication data

A BR/O-Link Gateway is required to use the device's communication data and forward them to a higher-level bus system. The following devices are suitable:

- GWY-CB-1-BR-IO (BR/IO-Link Gateway)
- ESM-CB (safety relay with integrated BR/IO-Link Gateway)

13.1. Connection to a BR/IO-Link Gateway GWY-CB

The Gateway is an IO-Link device. Communication via IO-Link offers cyclical (process data) and acyclical (device data and events) data exchange (see chapter 13.3. Overview of the communication data on page 34).
The communication connection C on the device allows the diagnostic line to be connected to the Gateway. The $0 \mathrm{x} / \mathrm{C}$ connection represents a non-safety-related communication channel between the Gateway and the connected devices.
IO-Link communication can be used for the following functions as well:

- Reset for acknowledging error messages

You will find further information in the operating instructions for your BR/IO-Link Gateway.

13.2. Connection to a safety relay ESM-CB

The safety relay ESM-CB features an integrated BR/IO-Link Gateway. In addition to functioning as an IO-Link device (see chapter 13.1. Connection to a BR/1O-Link Gateway GWY-CB on page 34), the device can be used for connecting two monitored single- or dual-channel sensor circuits. The sensor circuits evaluate various signaling devices:

- Sensor circuit S1 with short circuit detection; suitable for single- or dual-channel safety sensors
- Sensor circuit S2, suitable for OSSD signals; short circuit detection by signaling device

When at least one sensor circuit is interrupted, the safety relay initiates the safe state. Different relay starting behaviors and various monitoring functions are possible.
The device's safety outputs F01A and FO1B are routed to the OSSD inputs of the safety relay. The OD/C connection of the device allows the diagnostic line to be connected to the Gateway.
You will find further information in the operating instructions for your safety relay with integrated BR/10-Link Gateway.

13.3. Overview of the communication data

The switch transmits both process data that are continuously transmitted to the evaluation unit (cyclical data) and data that can be polled specifically as needed (acyclical data). For further information on connection and on the communication data, refer to the operating instructions for your BR/IO-Link Gateway.

13.3.1. Cyclical data (process data)

Table 2: Cyclical data (process data)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	01	-	OER	-	OM	OQ	-	OD
Byte 2	S1	S2	S3	-	OLS		OL	

Table 3: Status and control data

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	H1	H2	H3	H1_B	H2_B	H3_B	-	CL

Extended version
Version with control by BR

13.3.2. Acyclical data (device data and events)

After one of the commands listed below is sent, the requested data are provided via the IO-Link Gateway.
The following applies to CTP devices of version V1.3.X and to CTA devices of version V2.1.X: The reply message always consists of 8 bytes in big endian format.

Example 1: Reply message in response to the command Send device ID number/serial number: 060268 E0 00011700 In this example, the device's ID number is 157920 and its serial number is 279.

1) Each BR device must be addressed individually in a chain.

For more information on these and other acyclical data, refer to the operating instructions for your BR/IO-Link Gateway.

14. Setup

14.1. LED displays

You will find a detailed description of the signal functions in chapter 15. System status table CTP/CTA-L1/2-BR on page 38.

LED	Color
STATE	green
LOCK	yellow
DIA	red

14.2. Teaching-in actuator (only for unicode evaluation)

The actuator must be allocated to the safety switch using a teach-in function before the system forms a functional unit.
During a teach-in operation, the safety outputs are switched off, i.e. the system is in the safe state.
The teach-in operation starts automatically. The number of possible teach-in operations is unlimited.

| Tip! | Tipl
 Prior to switching on, close the guard on which the actuator to be taught-in is installed. The teach-in
 operation starts immediately after switching on. This feature simplifies above all teach-in with series
 connections and on large installations. |
| :--- | :--- | | Important! |
| :--- |
| - The teach-in operation can be performed only if the device does not have any internal fault. |
| - Devices in the condition as supplied remain in teach-in standby state until they have successfully |
| taught-in the first actuator. Once taught-in, switches remain in the teach-in standby state for approx. |
| 3 min. after each switch-on. |
| , The safety switch disables the code of the preceding device if teach-in is carried out for a new actuator. |
| Teach-in is not possible again immediately for this device if a new teach-in operation is carried out. |
| The disabled code is released again in the safety switch only after a third code has been taught-in. |
| , The safety switch can be operated only with the last actuator taught-in. |
| , If the switch detects the actuator that was most recently taught-in when in the teach-in standby state, |
| this state is ended immediately and the switch changes to normal operation. |
| , The actuator to be taught-in is not activated if it is within the actuating range for less than 30 s. |

1. Establish teach-in standby:

- Devices in the condition as supplied: unlimited teach-in standby after switching on.
- Switch already taught-in: teach-in standby is available for approx. 3 min after switching on.
\Rightarrow Teach-in standby indication, STATE LED flashes 3 x repeatedly.

2. Insert the actuator during teach-in standby.
\Rightarrow The automatic teach-in operation starts (duration approx. 30 s). During the teach-in operation the STATE LED flashes (approx. 1 Hz). Alternate flashing of the STATE and DIA LEDs acknowledges the successful teach-in operation.
Teach-in errors are indicated by the illumination of the red DIA LED and a flashing code on the green STATE LED (see chapter 15. System status table CTP/CTA-L1/2-BR on page 38).
3. Switch off operating voltage (min. 3 s).
\Rightarrow The code of the actuator that was just taught-in is activated in the safety switch.
4. Switch on operating voltage.
\Rightarrow The device operates normally.

14.3. Functional check

WARNING

Danger of fatal injury as a result of faults in installation and functional check.
Before carrying out the functional check, make sure that there are no persons in the danger zone.
Observe the valid accident prevention regulations.

14.3.1. Mechanical function test

The actuator must slide easily into the actuating head. Close the guard several times to check the function. For devices with mechanical release (emergency release or escape release), the correct function of the release must be checked as well.

14.3.2. Electrical function test

After installation and after any fault, the safety function must be fully checked. Proceed as follows:

1. Switch on operating voltage.
\Rightarrow The machine must not start automatically.
\Rightarrow The safety switch carries out a self-test. The green STATE LED then flashes at regular intervals.
2. Close all guards. In case of guard locking by solenoid force: activate guard locking.
\Rightarrow The machine must not start automatically. It must not be possible to open the guard.
\Rightarrow The green STATE LED illuminates continuously.
3. Enable operation in the control system.
\Rightarrow It must not be possible to deactivate guard locking as long as operation is enabled.
4. Disable operation in the control system and deactivate guard locking.
\Rightarrow The guard must remain locked until there is no longer any risk of injury.
\Rightarrow It must not be possible to start the machine as long as guard locking is deactivated.
Repeat steps 2-4 for each guard.

14.4. Factory reset

Before switching on, connect the two outputs FO1A and FO1B to 0 V or set the bit $0 \times 1 \mathrm{E}$ via IO-Link communication.

15．System status table CTP／CTA－L1／2－BR

Operating mode					LED indicator Output			State
							3 0 $\overline{0}$ 0	
Self－test	X	off	off	off	勺－ 5 Hz	\bigcirc	\bigcirc	Self－test after power－up
	X	off	off	off	勺 $\quad 5 \mathrm{~Hz}$	为 $1 \times$	\bigcirc	No communication with the BR／IO－Link Gateway
Normal operation	closed	on	on	on	－－	\bigcirc	－\％	Normal operation，door closed and locked
	closed	off	on	on	$\because \quad 1 \times \text { in- }$	0	$\frac{16}{11}$	Normal operation，door closed and locked，safety outputs not switched because： －Preceding device in the switch chain signals door open （only with series connection）
	open	off	off	off	为 $1 \times$	\bigcirc	身	Normal operation，door open，ready for guard locking
	closed	off	off	on	$\therefore \quad \begin{array}{ll} 1 \times \text { in- } \\ \text { verse } \end{array}$	0	\bigcirc	Normal operation，door closed and not locked
	open	off	off	off	为 $1 \times$	0	\bigcirc	Normal operation，door open
Teach－in operation （only unicode）	open	off	off	off	为 $3 x$	\bigcirc	\bigcirc	Device in teach－in standby
	closed	off	X	on	身 1 Hz	0	\bigcirc	Teach－in operation
	X	off	X	X	\cdots	首	\bigcirc	Positive acknowledgment after completion of teach－in operation
Fault display	X	off	x	x	为 $1 \times$	$\begin{aligned} & \text { 18 } \\ & \text { or } \\ & \therefore \quad \begin{array}{c} 1 \times \\ \text { in- } \\ \text { verse } \end{array} \end{aligned}$	\bigcirc	Error in the teach－in operation（only unicode） Actuator removed from the actuating range prior to the end of the teach－in operation or faulty actuator detected
	X	off	off	off	为 $2 x$		\bigcirc	Input fault （e．g．missing test pulses，illogical switch state from previous switch in the switch chain）
	X	off	off	off	为 $3 x$		\bigcirc	Read error （e．g．actuator faulty）
	X	off	off	off	为 $4 x$		\bigcirc	Output fault （e．g．short circuit，loss of switching ability）
	X	off	X	X	为 $5 x$		\bigcirc	Disabled actuator detected／environment error
	X	off	off	off	0	六	\bigcirc	Internal fault／plausibility error

Key to symbols	\bigcirc		LED not illuminated
	-16		LED illuminated
	$\therefore \quad \begin{array}{ll} 1 \times \text { in- } \\ & \text { verse } \end{array}$	\square	LED illuminated，briefly goes off 1 x
	$\because 5 \mathrm{Cz}$	70700］	LED flashes at 5 Hz
	－3x	$\square \square \square$	LED flashes three times，and this is then repeated
	$\because<\underbrace{\prime}$		LEDs flash alternately
	X		Any state

When DIA flashes inversely once，the fault display can generally be reset by opening and closing the guard after remedying the cause．If the fault is still displayed afterward，as well as for all other fault displays，briefly interrupt the power supply． Contact the manufacturer if the fault display is not reset after restarting．

Important！

If you do not find the displayed device status in the system status table，this indicates an internal device fault．In this case，contact the manufacturer．

16. Technical data

NOTICE

If a data sheet is available for the product, the information on the data sheet applies.

16.1. Technical data for safety switch CTP-L1/2-BR

Parameter		Value		Unit
	min.	typ.	max.	
Reliability values acc. to EN ISO 13849-1 6)				
Mission time	20			years
Monitoring of guard locking and the guard position				
Category	4			
Performance Level (PL)	e			
PFH ${ }_{\text {D }}$	$5.38 \times 10-9 / \mathrm{h}$			
Control of guard locking				
Category	Depends on external control (with control of guard locking via IO-Link communication, not a safety characteristic)			
Performance Level (PL)				
PFH ${ }_{\text {D }}$				

1) Dependent on the actuator used
2) Trip characteristic medium slow-blow
3) Applies to a load with $C \leq 30 \mathrm{nF}$ and $\mathrm{R} \leq 20 \mathrm{k} \Omega$
4) Values at a switching current of 50 mA without taking into account the cable lengths
5) Corresponds to the actuation frequency
6) For the issue date, refer to the declaration of conformity in chapter 20

16.2. Technical data for safety switch CTA-L1/2-BR

Parameter	Value			Unit
	min.	typ.	max.	
Monitoring outputs OL/C, OI, OD	3 semiconductor outputs, p-switching, short circuit-proof			
Output voltage	$0.8 \times \mathrm{U}_{\mathrm{B}}$	-	UB	V DC
Max. load	1	-	50	mA
Solenoid				
Solenoid operating voltage $\mathrm{U}_{\mathrm{IMP}}$ (reverse polarity protected, regulated, residual ripple $<5 \%$)	24 V DC -15/+10\%			
Solenoid current consumption $\mathrm{I}_{\text {MP }}$	400			mA
Connection rating	6			W
Duty cycle	100			\%
Reliability values acc. to EN ISO 13849-1 6)				
Mission time	20			years
Monitoring of guard locking and the guard position				
Category	4			
Performance Level (PL)	e			
PFH ${ }_{\text {D }}$	$5.38 \times 109 / \mathrm{h}$			
Control of guard locking				
Category	Depends on external control (with control of guard locking via IO-Link communication, not a safety characteristic)			
Performance Level (PL)				
PFH ${ }_{\text {D }}$				

1) Dependent on the actuator used
2) Trip characteristic medium slow-blow
3) Applies to a load with $\mathrm{C} \leq 30 \mathrm{nF}$ and $\mathrm{R} \leq 20 \mathrm{k} \Omega$
4) Values at a switching current of 50 mA without taking into account the cable lengths
5) Corresponds to the actuation frequency
6) For the issue date, refer to the declaration of conformity in chapter 20

16.3. Typical system times

Refer to the technical data for the exact values.
Ready delay: After switch-on, the device carries out a self-test. The system is ready for operation only after this time.
Turn-on time of safety outputs: The max. reaction time $t_{\text {on }}$ is the time from the moment when the guard is locked to the moment when the safety outputs switch on.

Simultaneity monitoring of enable inputs FI1A/FI1B: If the enable inputs have different switching states for longer than a specific time, the safety outputs F01A and F01B will be switched off. The device enters the fault state.

Risk time according to EN 60947-5-3: The risk time is the maximum time until at least one of the safety outputs F01A or F01B switches off safely when the actuator is removed from the actuating range. This also applies if an internal or external fault occurs at this moment.
If several devices are operated in a series connection, the risk time of the overall device chain will increase with each device added. Use the following calculation formula:
$t_{r}=t_{r, e}+\left(n \times t_{1}\right)$
$t_{r}=$ Total risk time
$t_{r, e}=$ Risk time for single device (see technical data)
$t_{1}=$ Risk time delay per device
$\mathrm{n}=$ Number of additional devices (total number -1)
Discrepancy time: The safety outputs F01A and F01B switch with a slight time offset. They have the same signal state no later than after the discrepancy time.

Test pulses at the safety outputs: The device generates its own test pulses on the safety outputs F01A and F01B. A downstream control system must tolerate these test pulses.
This can usually be set up in the control systems by parameter assignment. If parameter assignment is not possible for your control system or if shorter test pulses are required, contact our support organization.
The test pulses are also output when the safety outputs are switched off.

16.4. Radio frequency approvals

FCC ID: 2AJ58-13
IC: 22052-13

FCC/IC-Requirements

This device complies with part 15 of the FCC Rules and with Industry Canada's licence-exempt RSSs. Operation is subject to the following two conditions:

1) This device may not cause harmful interference, and
2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:
(1) l'appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Supplier's Declaration of Conformity

47 CFR § 2.1077 Compliance Information
Unique Identifier:
CTP-I-AR SERIES
CTP-II-AR SERIES
CTP-I2-AR SERIES
CTP-IBI-AR SERIES
CTP-L1-AR SERIES
CTP-L2-AR SERIES
CTP-LBI-AR SERIES
CTP-I-AP SERIES
CTP-II-AP SERIES
CTP-I2-AP SERIES
CTP-IBI-AP SERIES
CTP-L1-AP SERIES
CTP-L2-AP SERIES
CTP-LBI-AP SERIES
CTA-BR SERIES
CTA-BP SERIES
CTP-BR SERIES
CTP-BP SERIES

Responsible Party - U.S. Contact Information EUCHNER USA Inc.

1860 Jarvis Avenue
Elk Grove Village, Illinois 60007
+1 315 701-0315
info(at)euchner-usa.com
http://www.euchner-usa.com

16.5. Dimension drawing for safety switch CTP/CTA...

16.5.1. Dimension drawing for safety switch CTP...

Version with plug connectors $2 \times \mathrm{M} 12$

With escape release

The actuator shaft for the escape release can be extended using extensions (max. 94 mm)

16.5.2. Dimension drawing for safety switch CTA...

Version with plug connectors $2 \times \mathrm{M} 12$

Version with plug connector M23 (RC18)

With escape release

16.5.3. Dimension drawing for connections and variants CTP/CTA ...

Plug connectors $2 \times \mathrm{M} 12$

Cable outlet C

Cable outlet A

With auxiliary key release

With emergency release
With wire front release (bowden)

16.6. Technical data for actuator CTP/CTA-...

Parameter	Value			Unit
	min.	typ.	max.	
Housing material	Fiber reinforced plastic			
Weight	$0.03 \ldots 0.06$ (depending on version)			kg
Ambient temperature	-20	-	+55	${ }^{\circ} \mathrm{C}$
Degree of protection	IP65/IP67/P69/IP69K			
Mechanical life	1×106			
Locking force Straight actuator 165497 (black) 1) 126015 (red) - Hinged actuator - Bent actuator	$\begin{aligned} & \mathrm{F}_{\max } \\ & \\ & 8,000 \\ & 3,900 \\ & 2,600 \\ & 1,500 \end{aligned}$	$\mathrm{F}_{\mathrm{ZH}} \text { (ISO 14119) }$ $\begin{aligned} & 3,000 \\ & 2,000 \\ & 1,100 \\ & \hline \end{aligned}$	$\mathrm{F}_{\text {ZH }}$ (TÜV Süd) $4,000$	N
Installation orientation	Any			
Power supply	Inductive via read head			

1) Possible only in combination with CTA-BR
16.6.1. Dimension drawing for actuator CTP/CTA-...

The actuator is supplied with screws that cannot easily be unscrewed with a tool.

17. Ordering information and accessories

Abstract

Tip! Suitable accessories, e.g. cables or assembly material, can be found at www.euchner.com. To order, enter the order number of your item in the search box and open the item view. Accessories that can be combined with the item are listed in Accessories.

18. Inspection and service

WARNING

Danger of severe injuries due to the loss of the safety function.

- If damage or wear is found, the complete switch and actuator assembly must be replaced. Replacement of individual parts or assemblies is not permitted.
Check the device for proper function at regular intervals and after every fault. For information about possible time intervals, refer to EN ISO 14119:2013, section 8.2.

Regular inspection of the following is necessary to ensure trouble-free long-term operation:

- Check the switching function (see chapter 14.3. Functional check on page 37)
- Check all additional functions (e.g. escape release, lockout bar, etc.)
- Check the secure mounting of the devices and the connections
- Check for contamination

No servicing is required. Repairs to the device are only allowed to be made by the manufacturer.

NOTICE

The year of manufacture is given in the laser marking at the bottom right corner. The current version number in the format (V X.X.X) can also be found on the device.

19. Service

If servicing is required, please contact:
EUCHNER GmbH + Co. KG
Kohlhammerstraße 16
70771 Leinfelden-Echterdingen
Germany

Service telephone:

+49 711 7597-500
E-mail:
support@euchner.de

Internet:

www.euchner.com

20. Declaration of conformity

The declaration of conformity is part of the operating instructions.
The complete EU declaration of conformity can be found at www.euchner.com. Enter the order number of your device in the search box. The document is available under Downloads.

Euchner GmbH + Co. KG
Kohlhammerstraße 16
70771 Leinfelden-Echterdingen
Germany
info@euchner.de
www.euchner.com

Edition:
2537376-03-03/23
Title:
Operating Instructions Transponder-Coded Safety Switch CTP/CTA-L1/2-BR
(translation of the original operating instructions)
Copyright:
© EUCHNER GmbH + Co. KG, 03/2023
Subject to technical modifications; no responsibility is accepted for the accuracy of this information.

[^0]: * In some product variants the auxiliary voltage UA is connected internally to the operating voltage UB.

[^1]: * Function and compatibility are dependent on the connector assignment of the device connected.

