Position Switches and Multiple Limit Switches

EUCHNER

More than safety.

EUCHNER

More than safety.

Headquarters in Leinfelden-Echterdingen

Logistics center in Leinfelden-Echterdingen

Internationally successful - the EUCHNER company

EUCHNER GmbH + Co. KG is a world-leading company in the area of industrial safety technology. EUCHNER has been developing and producing high-quality switching systems for mechanical and systems engineering for more than 60 years.
The medium-sized family-operated company based in Leinfelden, Germany, employs around 750 people around the world.

18 subsidiaries and other sales partners in Germany and abroad work for our international success on the market.

Quality and innovation - the EUCHNER products

A look into the past shows EUCHNER to be a company with a great inventive spirit. We take the technological and ecological challenges of the future as an incentive for extraordinary product developments.

EUCHNER safety switches monitor safety doors on machines and installations, help to minimize dangers and risks and thereby reliably protect people and processes. Today, our products range from electromechanical and electronic components to intelligent integrated safety solutions. Safety for people, machines and products is one of our dominant themes.

We define future safety technology with the highest quality standards and reliable technology. Extraordinary solutions ensure the great satisfaction of our customers. The product ranges are subdivided as follows:

- Transponder-coded Safety Switches
- Transponder-coded Safety Switches with guard locking
- Multifunctional Gate Box MGB
- Access management systems (Electronic-Key-System EKS)
- Electromechanical Safety Switches
- Magnetically coded Safety Switches
- Enabling Switches
- Safety Relays
- Emergency Stop Devices
- Hand-Held Pendant Stations and Handwheels
- Safety Switches with AS-Interface
- Joystick Switches
- Position Switches

Position Switches and Multiple Limit Switches

Position Switches

EUCHNER

More than safety.

Position Switches

General information A-4
Precision single hole fixing limit switches A-9
With reed contact A-10
With snap-action switching element A-16
With slow-action switching element A-23
Precision single limit switches A-25
Design N01 A-26
Design NB01 A-31
Design SN01 A-32
Design N1A A-34
Design N10 A-38
Design N11 A-39
Inductive single limit switches A-41
Design ENA A-42
Design ESN A-43
Accessories A-44
Round connector M12 A-44
LED function display A-47
Cable glands A-47
Additional products A-47
Appendix A-48
Terms and explanations A-48
Item index A-50

General information

Precision single hole fixing limit switches with reed contact or snap-action switching element

EUCHNER precision single hole fixing limit switches are technically sophisticated command switches, which have been proving their reliability, day in and day out, for decades in harsh industrial applications.
These mechanically actuated precision single hole fixing limit switches are IP 67 rated and are entirely maintenance-free.
EUCHNER precision single hole fixing limit switches feature a thread on the upper part and can thus be inserted or screwed through the mounting hole either from the cable end or from the actuator end. Setting the position of the operating point opposite the part of the machine to be sensed is easy with this thread.
The compact overall size and the round design allow installation directly at the sensing points. This feature dispenses with the complicated levers or linkages associated with a high level of design complexity and expense.

Precision single limit switches

EUCHNER precision single limit switches are technically precise command switches, which have been developed on the basis of practical requirements in close collaboration with machine tool manufacturers.
The use of high-quality materials, the interplay of sophisticated technology and practically oriented design guarantee operation under even the toughest conditions.
EUCHNER precision single limit switches are used for positioning and controlling machines and in industrial installations.
The different designs, with a choice of five different types of plunger, and easy adjustability from longitudinal to transverse actuation offer the user a broad range of individual applications.

Inductive single limit switches

Inductive single limit switches are used for positioning and control in all areas of mechanical and systems engineering. Inductive single limit switches are used for automation tasks in machinery in the wood, textile and plastics industries.
Due to their non-contact and thus wear-free principle of operation, inductive single limit switches are insensitive to heavy vibration, heavy soiling and have an above average mechanical life even in aggressive ambient conditions.
Interchangeability with mechanical single limit switches means that it is possible to straightforwardly modify machines. The switches can therefore be retrofitted on existing machine installations to take full advantage of the benefits of non-contact switches.

Switching elements with reed contact

Reed contact

The reed contact comprises two ferromagnetic contacts in a glass bulb. When the reed contact is placed in a magnetic field, the contacts adopt opposite polarities and are closed.
For series EGT with reed contact.

Mechanical switching elements

Changeover contact with snap-action function

Snap-action switching element ${ }^{1)}$ with single gap and three connections. For series EGT with snap-action switch and series N01, NB01, SN01 with soldered connection.

Snap-action switching element ${ }^{1)}$ with one normally open contact (NO) and one normally closed contact (NC)

With double gap and electrically isolated switching bridge. The two moving contacts are electrically isolated from each other. Switching element with four connections.
For series SNO1 with soldered connection and series N1A, N10, N11.

Safety switching element with slow-action switching contact ${ }^{2)}$

With one positively driven contact and double gap. Switching contact with two connections.

For use in single limit switches with safety function.
For series NB01 with safety function and series N1A with safety function.

Safety switching element with snap-action switching contact ${ }^{1)}$

With one positively driven contact and one NO contact. Double gap and electrically isolated switching bridge. Switching contact with four connections.
For use in single limit switches with safety function.
For series N1A with safety function.

[^0]
Positively driven contacts

Positively driven contacts are used in some switching elements. These are special switching contacts that are designed to ensure the switching contacts are always reliably separated. Even if contacts are welded together, the connection is opened by the actuating force.
It is a common feature of all safety switching elements that at least one switching contact is designed as a positively driven contact. Often two positively driven contacts are employed to increase safety using the principle of duplicated design (redundancy). This dual-channel design ensures that on the failure of one channel or on a fault in the control circuit (e.g. in the machine wiring), the interlocking can still be provided with the aid of the second channel.

Positively driven position switch.

Safety switching elements marked with this symbol are not available as replacement switching elements.

Inductive switching elements

NO function

The NO function means that the load current flows when the active face of the inductive switching element is activated and that no current flows when the active face is not activated.

NC function

The NC function means that the load current does not flow when the active face of the inductive switching element is activated and that current flows when the active face is not activated.

DC NC contact, PNP

$\mathrm{NO}+\mathrm{NC}$ function

The NO + NC function incorporates both an NO function and an NC function. Associated circuit diagrams and wiring diagrams are given in the technical data.

DC NO + NC contacts, PNP

Precision single limit switches

Layout

The die-cast aluminum housings for the EUCHNER single limit switches have been proven in even the harshest conditions with their high strength and resistance to corrosion.
They do not require a protective paint finish, but can be painted at any time without prior treatment.
Depending on the design, the hardened plungers made of stainless steel run precisely in either the anodized guide bore in the housing or in a sintered bronze sleeve. These maintenance-free sliding elements make a key contribution to the reliability and correct operation of the switches. Even beyond the guaranteed mechanical life.

Exterior diaphragm

To provide protection against resinous cooling lubricants and against the penetration of very small particles, e.g. saw dust, graphite and glass dust, and to provide protection against freezing in the low temperature range, a series with an exterior diaphragm is available.
The exterior diaphragm provides additional sealing of the plunger outside the housing.
The plunger guides in the housing are thus reliably protected from the penetration of the cooling lubricant. Plunger sticking is prevented, and the replacement of the switch or plunger is unnecessary. Technical data for this series: see page A-37.

Seals

EUCHNER uses high-quality and proven acrylonitrile-butadiene rubber (NBR) for all seals and sealed areas. This material is resistant to oils, greases, fuels, hydraulic fluids and most known cooling lubricants. Moreover, NBR possesses high mechanical strength over a wide temperature range and so it is perfectly suitable for the highly stressed diaphragm seal, which separates the plunger compartment and the interior of the switch.
The material of the diaphragm seal is a key criterion for the quality, mechanical life and precision of the EUCHNER precision multiple limit switches. The same material is used for the cover seal and the cable entry. Seals made of Viton or silicone are available on request for special applications.

Adjustability

On the chisel plungers and the roller plungers (normal and extended) the approach direction can be changed by 90° at any time. After unscrewing the locking pin, the plunger can be rotated by 90°.

LED function display

If required, the EUCHNER single limit switches of design N1A can be equipped with an LED function display (AC/DC 10-60 V or AC 110/230 V, color red).
Built-in electronic regulation ensures that the luminosity remains constant independent of the voltage applied.

Cable connection

EUCHNER position switches are tested to degree of protection IP 67 in accordance with IEC 60529. In order to obtain this degree of protection, only high-quality metal cable glands with a captive sealing ring are used. A selection for different cable diameters is listed on page A-47.

Single hole fixing limit switches - cylindrical design

The round design with simple, single-hole assembly allows installation of the command switches directly at the scanning points. Exact adjustment is permitted by means of the precision metric thread. The limit switches with inert gas contact (reed contact) can be operated up to a water column pressure of 30 meters with degree of protection IP 68.

Features

- Six basic types M12 x 1 to $\mathrm{M} 18 \times 1.5$
- Housing of nickel-plated brass or stainless steel
- Mechanical life up to 30 million operating cycles
> Degree of protection IP 68/IP 67
- Operating point accuracy $\pm 0.01 \mathrm{~mm}$ max.
- With hard-wired cable or with M12 plug connection
- Temperature range $-30^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$

Precision single hole fixing limit switches

- With reed contact and protective diode

Plunger material stainless steel
Any installation position

Never switch incandescent lamps. Not even for test purposes.
Single hole fixing limit switches must not be used as an end stop.

Ambient temperature up to $120^{\circ} \mathrm{C}$

© CHI $=$

(cc) EHL =

Design EGT12, M12 x 1, dome plunger Connecting cable, double insulated

Dimension drawings

Wiring diagrams

$\mathrm{BN} \longrightarrow \square$
$\mathrm{WH} \longrightarrow \square$

Design EGT12, M12 x 1, dome plunger Connecting cable, double insulated

Technical data

Housing material	Sleeve	Stainless steel	Plastic
	Threaded section	Stainless steel	Stainless steel
Degree of protection acc. to IEC 60529		IP 65	IP 68
Ambient temperature	[${ }^{\text {C }}$]	$-25^{1)} \ldots+120$	$-25^{1)} \ldots+80$
Approach speed, max.	[m/min]	8	8
Mechanical life	axial actuation	30×10^{6} operating cycles (1×10^{6} at $120^{\circ} \mathrm{C}$)	30×10^{6} operating cycles
	radial actuation	-	1×10^{6} operating cycles ($\operatorname{dog} 30^{\circ}$)
Operating point accuracy ${ }^{2}$	[mm]	± 0.01	± 0.01
Actuating force (end position)	[N]	Approx. 16 (3 on request)	Approx. 16 (3 on request)
Switching element		Reed contact	Reed contact
Switching contact		1 NO or 1 NC	1 NO or 1 NC
Contact material		Rhodium	Rhodium
Rated insulation voltage U_{i}	[V]	50 回	50 回
Utilization category acc. to IEC 60947-5-1		$\mathrm{AC}-12$ $\mathrm{U}_{\mathrm{e}} 30 \mathrm{~V}$ $I_{e} 0.3 \mathrm{~A}$ $\mathrm{DC}-13$ $\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}$ $I_{\mathrm{e}} 0.3 \mathrm{~A}$	$\mathrm{AC}-12$ $U_{e} 30 \mathrm{~V}$ $\mathrm{I}_{\mathrm{e}} 0.3 \mathrm{~A}$ DC-13 $\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}$ $\mathrm{I}_{\mathrm{e}} 0.3 \mathrm{~A}$
Switching current, min., at 24 V	[mA]	1	1
Switching voltage, min.	[V DC]	1	1
Short circuit protection (control circuit fuse)	[A gG]	0.4	0.4
Connection		Silicone cable $2 \times 0.5 \mathrm{~mm}^{2}$	PUR cable $2 \times 0.5 \mathrm{~mm}^{2}$

Cab
2) The reproducible operating point accuracy relates to axial actuation, after run-in of approx. 2,000 operating cycles.
3) Mating connector see page A-44 to A-46.

Ordering table

1 NO	Connecting cable 3 m	$\begin{gathered} 104223 \\ \text { EGT12A3000C2250 } \end{gathered}$	-
	Connecting cable 5 m	-	$\begin{gathered} 082201 \\ \text { EGT12A5000 } \end{gathered}$
	Plug connector	-	-
1 NC	Connecting cable 3 m	-	-
	Connecting cable 5 m	On request	$\begin{gathered} 078848 \\ \text { EGT12R5000 } \end{gathered}$
	Plug connector	-	-

$$
\text { @EA[} 三 \text { © M }
$$

Design EGT12, M12 \times 1, dome plunger

Plug connector M12 with PE connection

Dimension drawings

Wiring diagrams

Design EGT12, M12 x 1, dome plunger
Plug connector M12, long plunger

Brass, nickel-plated	Brass, nickel-plated
Stainless steel	Stainless steel
IP 67 Mating connector inserted and screwed tight	IP 67 Mating connector inserted and screwed tight
$-25 \ldots+80$	$-25 \ldots+80$
8	5
30×10^{6} operating cycles	
1×10^{6} operating cycles ($\operatorname{dog} 30^{\circ}$)	5×10^{6} operating cycles
± 0.01	± 0.01
Approx. 16	Approx. 16
Reed contact	Reed contact
1 NO or 1 NC	1 NO or 1 NC
Rhodium	Rhodium
50	50
AC-12 $U_{e} 30 \mathrm{~V}$ $I_{e} 0.3 \mathrm{~A}$ DC-13 $U_{e} 24 \mathrm{~V}$ $I_{e} 0.3 \mathrm{~A}$	AC-12 Ue $30 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 0.3$ ADC-13 $\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V} \quad \mathrm{I}_{\mathrm{e}} 0.3 \mathrm{~A}$
1	1
1	1
0.4	0.4
Plug connector M12 ${ }^{3 /}$	Plug connector M12 ${ }^{31}$

-	-
-	-
$\begin{gathered} \mathbf{0 7 5 4 2 6} \\ \text { EGT12ASFM5 } \end{gathered}$	$\begin{gathered} \mathbf{0 9 5 1 1 2} \\ \text { EGT12ASFM5C2083 } \end{gathered}$
-	-
-	-
$\begin{gathered} \mathbf{0 7 5 4 2 7} \\ \text { EGT12RSFM5 } \end{gathered}$	-

Precision single hole fixing limit switches

- With reed contact and protective diode
> Plunger material stainless steel
Any installation position

Never switch incandescent lamps. Not even for test purposes.
Single hole fixing limit switches must not be used as an end stop.
E月LE © © UL Us
ETL E © (UL) Us

Design EGT11, M14 x 1, ball plunger
Connecting cable 0.5 m with plug connector M8

Dimension drawings

Wiring diagrams

Design EGT11, M14 x 1, ball plunger
Plug connector M12 with PE connection

2

Technical data

Housing material	Sleeve	Brass, nickel-plated	Brass, nickel-plated
	Threaded section	Stainless steel	Stainless steel
Degree of protection acc. to IEC 60529		IP 67 Mating connector inserted and screwed tight	IP 67 Mating connector inserted and screwed tight
Ambient temperature	[$\left.{ }^{\circ} \mathrm{C}\right]$	$-5 \ldots+65$	$-25 \ldots+80$
Approach speed, max.	[m/min]	60	60
Mechanical life	axial actuation	30×10^{6} operating cycles	30×10^{6} operating cycles
	radial actuation	-	5×10^{6} operating cycles ($\operatorname{dog} 15^{\circ}$)
Operating point accuracy ${ }^{2}$	[mm]	± 0.01	± 0.01
Actuating force (end position)	[N]	Approx. 2	Approx. 3
Switching element		Reed contact	Reed contact
Switching contact		1 NC	1 NO or 1 NC
Contact material		Rhodium	Rhodium
Rated insulation voltage U_{i}	[V]	50	50
Utilization category acc. to IEC 60947-5-1		$\begin{array}{lll} \hline A C-12 & U_{e} 30 \mathrm{~V} & \mathrm{I}_{\mathrm{e}} 0.3 \mathrm{~A} \\ \mathrm{DC}-13 & \mathrm{U}_{\mathrm{o}} 24 \mathrm{~V} & \mathrm{I}_{0} 0.3 \mathrm{~A} \end{array}$	$\mathrm{AC}-12$ $\mathrm{U}_{\mathrm{e}} 30 \mathrm{~V}$ $\mathrm{I}_{\mathrm{e}} 0.3 \mathrm{~A}$ DC-13 $\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}$ $\mathrm{I}_{\mathrm{e}} 0.3 \mathrm{~A}$
Switching current, min., at 24 V	[mA]	1	1
Switching voltage, min.	[V DC]	1	1
Short circuit protection (control circuit fuse)	[A gG]	0.4	0.4
Connection		Plug connector M8 ${ }^{\text {3) }}$	Plug connector M12 ${ }^{3}$

1) Cable hard wire
2) The reproducible operating point accuracy relates to axial actuation, after run-in of approx. 2,000 operating cycles.
3) Mating connector see page A-44 to A-46.

Ordering table

1 NO	Connecting cable 0.5 m with plug connector M8	-	-
	Connecting cable 5 m	-	-
	Plug connector	-	$\begin{gathered} 093352 \\ \text { EGT11A2NSFM5 } \end{gathered}$
1 NC	Connecting cable 0.5 m with plug connector M8	$\begin{gathered} \hline 084000 \\ \text { EGT11R2N50SAM4 } \end{gathered}$	-
	Connecting cable 5 m	-	-
	Plug connector	-	$\begin{gathered} 091848 \\ \text { EGT11R2NSFM5 } \end{gathered}$

(ac) $\mathrm{EH}[$) (@m

Design EGT12, M12 x 1, roller plunger
Plug connector M12, double insulated

Dimension drawings

Wiring diagrams

Brass, nickel-plated
Stainless steel
IP 67
Mating connector inserted and screwed tight
$-25 \ldots+80$
20
30×10^{6} operating cycles
± 0.01
Approx. 16
Reed contact
1 NO or 1 NC
Rhodium
50 回
AC-12 $\mathrm{U}_{\mathrm{e}} 30 \mathrm{~V} \quad \mathrm{I}_{\mathrm{e}} 0.3 \mathrm{~A}$
DC-13 $\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V} \quad \mathrm{I}_{\mathrm{e}} 0.3 \mathrm{~A}$
1
1
0.4
Plug connector M12 ${ }^{31}$

078483
EGT12ARSEM4C1888

Precision single hole fixing limit switches

- With reed contact
> Plunger material stainless steel Any installation position

Never switch incandescent lamps. Not even for test purposes.
Single hole fixing limit switches must not be used as an end stop.

Design EGT1/4, M14 x 1, ball plunger
Connecting cable, double insulated/plug con. M12

Dimension drawings

Wiring diagrams

For mating connector with LED display

Design EGT1/4, M14 x 1, ball plunger
Plug connector M12

Technical data

Housing material		Plastic	Brass, nickel-plated	Brass, nickel-plated
	ection	Stainless steel		Stainless steel
Degree of protection acc. to IEC 60529		IP 68	IP 67 ${ }^{\text {4) }}$	IP 67 Mating connector inserted and screwed tight
Ambient temperature	[${ }^{\text {C }}$]	$-25^{1)} \ldots+80$	$-25 \ldots+80$	$-25 \ldots+80$
Approach speed, max.	[m/min]	8		8
Mechanical life (axial)		30×10^{6} operating cycles		30×10^{6} operating cycles
Operating point accuracy ${ }^{2 /}$	[mm]	± 0.01		± 0.01
Actuating force (end position)	[N]	Approx. 16 / 3 on request		Approx. 16 / 3 on request
Switching element		Reed contact		Reed contact
Switching contact		1 NO or 1 NC		1 NO
Contact material		Rhodium		Rhodium
Rated insulation voltage U_{i}	[V]	250 回	50	50
Utilization category acc. to IEC 60947-5-1	AC-12	$\begin{gathered} \mathrm{U}_{\mathrm{e}} 230 \mathrm{VI} \mathrm{e}_{0} 0.03 \mathrm{~A} \\ \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 0.3 \mathrm{~A} \end{gathered}$	$\mathrm{U}_{\mathrm{e}} 30 \mathrm{VI}_{\mathrm{e}} 0.3 \mathrm{~A}$	AC-12 $\mathrm{U}_{\mathrm{e}} 30 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 0.3 \mathrm{~A}$
	DC-13		$\mathrm{U}_{\mathrm{e}} 24 \mathrm{VI}_{\mathrm{e}} 0.3 \mathrm{~A}$	DC-13 Ue 24 V Ie 0.3 A
Switching current, min., at 24 V	[mA]	1		1
Switching voltage, min.	[V DC]	1		1
Short circuit protection (control circuit fuse)	[A gG]	0.4		0.4
Connection		PUR cable $2 \times 0.5 \mathrm{~mm}^{2}$, encapsulated	Plug connector M12 ${ }^{3 /}$	Plug connector M12 ${ }^{3 /}$

1) Cable hard wired.
2) The reproducible operating point accuracy relates to axial actuation, after run-in of approx. 2,000 operating cycles.
3) Mating connector see page A-44 to A-46.
4) Mating connector inserted and screwed tight

Ordering table

1 NO	Connecting cable 2 m	$\begin{gathered} 001366 \\ \text { EGT1/4A2000 } \\ \hline \end{gathered}$	-
	Connecting cable 5 m	$\begin{gathered} 001368 \\ \text { EGT1/4A5000 } \end{gathered}$	-
	Plug connector	$\begin{gathered} 033976 \\ \text { EGT1/4ASEM4 } \end{gathered}$	$\begin{gathered} \mathbf{0 7 5 6 4 4} \\ \text { EGT1/4ASEM4C1802 } \end{gathered}$
1 NC	Connecting cable 2 m	$\begin{gathered} \hline 001371 \\ \text { EGT1/4R2000 } \\ \hline \end{gathered}$	-
	Connecting cable 5 m	$\begin{gathered} 001372 \\ \text { EGT1/4R5000 } \end{gathered}$	-
	Plug connector	$\begin{gathered} 033982 \\ \text { EGT1/4RSEM4 } \\ \hline \end{gathered}$	-

Made of high-quality stainless steel

$$
\mathbb{C l R E}
$$

With scraper made of PU
(CC) [1-

Design EGT1/4, M14 x 1, ball plunger
Connecting cable, max. pressure 300 kPa

Wiring diagrams

Design EGT1/4, M14 x 1, ball plunger
Plug connector M12

With scraper made of PU
(G) $\operatorname{EH[}$: (0)w

Design EGT1/4, M14 x 1, dome plunger Plug connector M12

High-quality stainless steel	Brass, nickel-plated	Brass, nickel-plated
	Stainless steel	Stainless steel
IP 68	$\text { IP } 67$ Mating connector inserted and screwed tight	IP 67 Mating connector inserted and screwed tight
$-25 \ldots+80$	$-25 \ldots+80$	$-25 \ldots+80$
8	Approx. 16	8
30×10^{6} operating cycles	5×10^{6} operating cycles	30×10^{6} operating cycles
± 0.01	± 0.01	± 0.01
Approx. 16	Approx. 16	Approx. 16
Reed contact	Reed contact	Reed contact
1 NO	1 NO or 1 NC	1 NO or 1 NC
Rhodium	Rhodium	Rhodium
50	50	50
AC-12 $\mathrm{U}_{\mathrm{e}} 30 \mathrm{~V}$ Ie 0.3 A	AC-12 $\mathrm{U}_{\mathrm{e}} 30 \mathrm{~V}$ Ie 0.3 A	AC-12 $\mathrm{U}_{\mathrm{e}} 30 \mathrm{~V}$ Ie 0.3 A
DC-13 Ue 24 V Ie 0.3 A	DC-13 Ue 24 V Ie 0.3 A	DC-13 Ue 24 V Ie 0.3 A
1	1	1
1	1	1
0.4	0.4	0.4
Hydrofirm cable $2 \times 0.5 \mathrm{~mm}^{2}$, encapsulated	Plug connector M12 ${ }^{3}$	Plug connector M12 ${ }^{3}$

094982 EGT1/4A2000C2079	-	102476
-	-	-
-	095278	EGT1/4A2000C2137
-	-	098071
EGT1/4ASEM4C2088	EGT1/4ASEM4C2137	
-	-	-
-	104316	-

Precision single hole fixing limit switches

- With snap-action switching element

Plunger material stainless steel
Any installation position

Single hole fixing limit switches must not be used as an end stop.
© \times EH

Design EGM8, M8 x 0.5, dome plunger
Connecting cable, double insulated
Dimension drawings

Design EGM12, M12 x 1, flat plunger
Connecting cable, double insulated

Wiring diagrams

Technical data

Housing material		Stainless steel	Stainless steel	
Degree of protection acc. to IEC 60529		IP 65	IP 65	
Ambient temperature	[${ }^{\circ} \mathrm{C}$]	$-20^{1)} \ldots+80$	$-20^{1)} \ldots+80$	$-30 \ldots+80$
Approach speed, max.	[m/min]	8	8	
Mechanical life (axial)		1×10^{6} operating cycles	1×10^{6} operating cycles	
Operating point accuracy ${ }^{2}$	[mm]	± 0.01	± 0.01	
Actuating force (end position)	[N]	Approx. 16	Approx. 16	
Switching element		Snap-action switching contact	Snap-action switching contact	
Switching contact		1 changeover contact	1 changeover contact	
Contact material		Fine silver, gold-plated	Silver alloy, gold-plated	
Rated insulation voltage U_{i}	[V]	250 回	250 回	
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$		2.5	2.5	
Utilization category acc. to IEC 60947-5-1		$\begin{array}{ccc} \hline \mathrm{AC}-15 & \mathrm{U}_{\mathrm{e}} 230 \mathrm{~V} & \mathrm{I}_{\mathrm{e}} 0.5 \mathrm{~A} \\ \mathrm{DC}-13 & \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V} & \mathrm{I}_{\mathrm{e}} 0.6 \mathrm{~A} \end{array}$	$\begin{array}{ccc} \hline \text { AC-15 } & U_{e} 230 \mathrm{~V} & \mathrm{I}_{\mathrm{e}} 0.5 \mathrm{~A} \\ \text { DC-13 } & \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V} & \mathrm{I}_{\mathrm{e}} 0.6 \mathrm{~A} \end{array}$	
Switching current, min., at 24 V	[mA]	10	10	
Switching voltage, min.	[DC$]$	12	12	
Short circuit protection (control circuit fuse)	[A gG]	2	2	
Connection		PUR cable $3 \times 0.5 \mathrm{~mm}^{2}$	PUR cable $3 \times 0.5 \mathrm{~mm}^{2}$	Silicone cable $3 \times 0.5 \mathrm{~mm}^{2}$

1) Cable hard wired.
2) The reproducible operating point accuracy relates to axial actuation, after run-in of approx. 2,000 operating cycles.
3) Mating connector see page A-44 to A-46.

Ordering table

1 changeover contact	Connecting cable 1 m	$\begin{gathered} 119345 \\ \text { EGM8-1000C2396 } \\ \hline \end{gathered}$	-	-
	Connecting cable1.2 m	-	$\begin{gathered} \mathbf{0 7 5 5 5 6} \\ \text { EGM12-1200C1791 } \end{gathered}$	$\begin{gathered} \mathbf{0 7 6 4 6 4} \\ \text { EGM12-1200C1820 } \end{gathered}$
	Connecting cable 2 m	-	-	-
	Connecting cable 2.5 m	-	-	-
	Connecting cable 4 m	-	$\mathbf{0 7 6 1 5 4}$ EGM12-4000C1791	-
	Connecting cable 5 m	-	-	-
	Plug connector	-	-	-

(cc) EH[

(C) EH[: (1)

Design EGM12, M12 \times 1, flat plunger Plug connector M12

Design EGM12, M12 x 1, dome plunger
For sealing with 0 -rings

Wiring diagrams

Precision single hole fixing limit switches

- With snap-action switching element
> Plunger material stainless steel Any installation position

Single hole fixing limit switches must not be used as an end stop.
(cc) $\mathrm{EH}=$
(CC) EHL = (ULIS

Design EGT1, M12 x 1, ball plunger
Connecting cable with PE connection

Dimension drawings

Wiring diagrams

Design EGT1, M12 x 1, ball plunger
Plug connector M12

Technical data

Housing material	Brass, nickel-plated	Brass, nickel-plated
Degree of protection acc. to IEC 60529	IP 67	$\text { IP } 67$ Mating connector inserted and screwed tight
Ambient temperature [${ }^{\circ} \mathrm{C}$]	$-25^{1)} \ldots+80$	$-25 \ldots+80$
Approach speed, max. [m/min]	8	8
Mechanical life (axial)	1×10^{6} operating cycles	1×10^{6} operating cycles
Operating point accuracy ${ }^{2)}$ [mm]	± 0.01	± 0.01
Actuating force (end position) [N]	Approx. 20	Approx. 20
Switching element	Snap-action switching contact	Snap-action switching contact
Switching contact	1 changeover contact	1 changeover contact
Contact material	Silver alloy, gold-plated	Silver alloy, gold-plated
Rated insulation voltage U_{i} [V]	250	50
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	2.5	2.5
Utilization category acc. to IEC 60947-5-1	$\begin{array}{lll} \hline \mathrm{AC}-15 & \mathrm{U}_{\mathrm{e}} 230 \mathrm{~V} & \mathrm{I}_{\mathrm{e}} 0.5 \mathrm{~A} \\ \mathrm{DC}-13 & \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V} & \mathrm{I}_{\mathrm{e}} 0.6 \mathrm{~A} \end{array}$	$\begin{array}{lll} \hline A C-15 & U_{e} 50 \mathrm{~V} & I_{e} 0.5 \mathrm{~A} \\ D C-13 & U_{e} 24 \mathrm{~V} & I_{e} 0.6 \mathrm{~A} \end{array}$
Switching current, min., at 24 V [mA]	10	10
Switching voltage, min. [V DC]	12	12
Short circuit protection (control circuit fuse) [A gG]	2	2
Connection	PUR cable $4 \times 0.5 \mathrm{~mm}^{2}$	Plug connector M12 ${ }^{3 /}$

1) Cable hard wired.
2) The reproducible operating point accuracy relates to axial actuation, after run-in of approx. 2,000 operating cycles.
3) Mating connector see page A-44 to A-46.

Ordering table

1 changeover contact	Connecting cable 2 m	$\begin{gathered} 092695 \\ \text { EGT1M12-2000 } \\ \hline \end{gathered}$	-
	Connecting cable 5 m	$\begin{gathered} 093364 \\ \text { EGT1M12-5000 } \end{gathered}$	-
	Plug connector	-	$\begin{gathered} 093365 \\ \text { EGT1M12SEM4 } \end{gathered}$

Precision single hole fixing limit switches

- With snap-action switching element
- Plunger material stainless steel

Any installation position

Single hole fixing limit switches must not be used as an end stop.

(cc) EHI =

(ccc) EAL =) © (4) us

Design EGT1, M14 x 1, ball plunger
Connecting cable with PE connection

Dimension drawings

Design EGT1, M14 x 1, ball plunger
Plug connector M12

Wiring diagrams

Technical data

Housing material	Brass, nickel-plated	Brass, nickel-plated
Degree of protection acc. to IEC 60529	IP 67	IP 67 Mating connector inserted and screwed tight
Ambient temperature [${ }^{\circ} \mathrm{C}$]	$-25^{1)} \ldots+80$	$-25 \ldots+80$
Approach speed, max. [m/min]	8	8
Mechanical life (axial)	1×10^{6} operating cycles	1×10^{6} operating cycles
Operating point accuracy ${ }^{2)}$ [mm]	± 0.01	± 0.01
Actuating force (end position) [N]	Approx. 20	Approx. 20
Switching element	Snap-action switching contact	Snap-action switching contact
Switching contact	1 changeover contact	1 changeover contact
Contact material	Silver alloy, gold-plated	Silver alloy, gold-plated
Rated insulation voltage U_{i} [V]	250	50
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	2.5	2.5
Utilization category acc. to IEC 60947-5-1	AC-15 $U_{e} 230 \mathrm{~V}$ $I_{e} 0.5 \mathrm{~A}$ DC-13 $U_{e} 24 \mathrm{~V}$ $I_{e} 0.6 \mathrm{~A}$	AC-15 $U_{e} 50 \mathrm{~V}$ $I_{e} 0.5 \mathrm{~A}$ DC-13 $U_{e} 24 \mathrm{~V}$ $I_{e} 0.6 \mathrm{~A}$
Switching current, min., at 24 V [mA]	10	10
Switching voltage, min. [V DC]	12	12
Short circuit protection (control circuit fuse) [A gG]	2	2
Connection	PUR cable $4 \times 0.5 \mathrm{~mm}^{2}$	Plug connector M12 ${ }^{3 /}$

1) Cable hard wired.
2) The reproducible operating point accuracy relates to axial actuation, after run-in of approx. 2,000 operating cycles.
3) Mating connector see page A-44 to A-46.

Ordering table

1 changeover contact	Connecting cable 2 m	EGT1-2000	-
	Connecting cable 5 m	001733	
	EGT1-5000	-	-
	Plug connector	-	019727
EGT1SEM4			

For plug connector with LED

 display
For plug connector with LED display

Design EGT1, M14 x 1, ball plunger
Plug connector M12

Wiring diagrams

Design EGT1, M14 x 1, ball plunger
Plug connector M12

Suitable for aggressive coolant; diaphragm made of Viton

Design EGT1, M14 x 1, ball plunger
Plug connector M12

Brass, nickel-plated	Brass, nickel-plated	Brass, nickel-plated
$\text { IP } 67$ Mating connector inserted and screwed tight	$\text { IP } 67$ Mating connector inserted and screwed tight	$\text { IP } 67$ Mating connector inserted and screwed tight
-25 ... +80	-5 ... +80	-5 ... +80
8	8	8
1×10^{6} operating cycles	1×10^{6} operating cycles	1×10^{6} operating cycles
± 0.01	± 0.01	± 0.01
Approx. 20	Approx. 20	Approx. 20
Snap-action switching contact	Snap-action switching contact	Snap-action switching contact
1 changeover contact	1 changeover contact	1 changeover contact
Silver alloy, gold-plated	Silver alloy, gold-plated	Silver alloy, gold-plated
50	50	50
2.5	2.5	2.5
DC-13 Ue 24 V Ie 0.6 A	AC-15 Ue $50 \mathrm{~V} \quad \mathrm{I}_{\mathrm{e}} 0.5 \mathrm{ADC-13} \quad \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V} \quad \mathrm{I}_{\mathrm{e}} 0.6 \mathrm{~A}$	AC-15 Ue $50 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 0.5 \mathrm{ADC-13} \quad \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V} \quad \mathrm{I}_{\mathrm{e}} 0.6 \mathrm{~A}$
10	10	10
12	12	12
2	2	2
Plug connector M12 ${ }^{3 /}$	Plug connector M12 ${ }^{3 /}$	Plug connector M12 ${ }^{3 \text { 3 }}$

-	-	-
-	-	-
$\mathbf{0 5 4 2 5 0}$	$\mathbf{1 0 2 4 7 9}$	$\mathbf{0 7 7 3 4 7}$
EGT1SEM4C1613	EGT1SEM4C2221	EGT1SEM4C1832

Precision single hole fixing limit switches

- With snap-action switching element

Plunger material stainless steel
Any installation position

Single hole fixing limit switches must not be used as an end stop.

(cc) $\mathbf{E F L}=$

Design EGT2, M18 x 1.5, ball plunger
Connecting cable with PE connection

Dimension drawings

Wiring diagrams

EFI (Wa$)$ © U U U
Design EGT2, M18 x 1.5, ball plunger
Plug connector M12

Technical data

Housing material	Brass, nickel-plated	Brass, chromium-plated
Degree of protection acc. to IEC 60529	IP 67	$\text { IP } 67$ Mating connector inserted and screwed tight
Ambient temperature [${ }^{\circ} \mathrm{C}$]	$-5 \ldots+60$	$-5 \ldots+60$
Approach speed, max. [m/min]	10	10
Mechanical life	1×10^{6} operating cycles	1×10^{6} operating cycles
Operating point accuracy ${ }^{11}$ [mm]	± 0.01	± 0.01
Actuating force (end position) [N]	Approx. 24	Approx. 24
Switching element	Snap-action switching contact	Snap-action switching contact
Switching contact	1 NC and 1 NO	1 NC and 1 NO
Contact material	Fine silver, gold-plated	Fine silver, gold-plated
Rated insulation voltage U_{i} [V]	250	50
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	2.5	2.5
Utilization category acc. to IEC 60947-5-1	$\begin{array}{ccc} \hline A C-15 & U_{e} 230 V & I_{e} 2 \mathrm{~A} \\ D C-13 & U_{e} 24 \mathrm{~V} & I_{e} 1 \mathrm{~A} \end{array}$	$\begin{array}{lll} \hline A C-15 & U_{e} 30 V & I_{e} 2 A \\ D C-13 & U_{e} 24 V & I_{e} 1 A \end{array}$
Switching current, min., at 24 V [mA]	10	10
Switching voltage, min. [V DC]	12	12
Short circuit protection (control circuit fuse)	2	2
Connection	PUR cable $5 \times 0.75 \mathrm{~mm}^{2}$	Plug connector M12 ${ }^{21}$

1) The reproducible operating point accuracy relates to axial actuation, after run-in of approx. 2,000 operating cycles.
2) Mating connector see page A-44 to A-46.

Ordering table

$1 \mathrm{NC}+1$ NO	Connecting cable 2 m EGT2-2000	001865 EGT2-5000	-
	Connecting cable 5 m	-	-
	Plug connector		052504 EGT2SEM4

Precision single hole fixing limit switches

- With snap-action switching element

Plunger material stainless steel
Any installation position

Single hole fixing limit switches must not be used as an end stop.

With four switching contacts

Design EGT4, M18 x 1.5, ball plunger
Connecting cable with PE connection

Dimension drawings

Wiring diagrams

Technical data

Housing material		Brass, nickel-plated
Degree of protection acc. to IEC 60529		IP 67
Ambient temperature	[${ }^{\text {C }}$]	$-25^{1)} \ldots+70$
Approach speed, max.	[m/min]	10
Mechanical life		5×10^{5} operating cycles
Operating point accuracy ${ }^{2 /}$	[mm]	± 0.01
Actuating force (end position)	[N]	Approx. 25
Switching element		Snap-action switching contact
Switching contact		2 NC and 2 NO
Contact material		Fine silver, gold-plated
Rated insulation voltage U_{i}	[V]	250
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$		2.5
Utilization category acc. to IEC 60947-5-1		$\begin{array}{ccc} A C-15 & U_{e} 230 V & I_{e} 2 \mathrm{~A} \\ D C-13 & U_{e} 24 \mathrm{~V} & \mathrm{I}_{\mathrm{e}} 1 \mathrm{~A} \end{array}$
Switching current, min., at 24 V	[mA]	10
Switching voltage, min.	[V DC]	12
Short circuit protection (control circuit fuse)	[A gG]	2
Connection		PUR cable $9 \times 0.5 \mathrm{~mm}^{2}$

1) Cable hard wired.
2) The reproducible operating point accuracy relates to axial actuation, after run-in of approx. 2,000 operating cycles.

Ordering table

$2 \mathrm{NC}+1$ NO	Connecting cable 2 m	094339 EGT4-2000
	Connecting cable 5 m	092026
	EGT4-5000	

Precision single hole fixing limit switches

- With slow-action switching element
- Plunger and housing made of high-quality stainless steel
Any installation position
- Threaded section M12 x 1

Single hole fixing limit switches must not be used as an end stop.

Switching element, with three switching contacts

Design EGZ12, M12 x 1, dome plunger
Connecting cable with PE connection

Dimension drawings

Wiring diagrams

Technical data

Housing material	Stainless steel
Plunger material	Stainless steel 60 HRC hardened and polish-ground
Degree of protection acc. to IEC 60529	IP 67
Ambient temperature [${ }^{\circ} \mathrm{C}$]	$-20^{1)} \ldots+80$
Approach speed, max. [m/min]	8
Mechanical life	3×10^{6} operating cycles
Actuating force at $20^{\circ} \mathrm{C}$ [N]	<16
Switching element	Slow-action switching contact
Switching contact	See travel diagram
Contact material	Silver alloy, gold flashed
Rated insulation voltage U_{i} [V]	250
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	2.5
Utilization category acc. to IEC 60947-5-1	$\begin{array}{ccc} \hline A C-15 & U_{e} 230 V & I_{e} 4 A \\ D C-13 & U_{e} 24 V & I_{e} 4 A \end{array}$
Switching current, min., at 24 V [mA]	1
Switching voltage, min. [V DC]	12
Short circuit protection (control circuit fuse)	4
Connection	PUR cable $7 \times 0.5 \mathrm{~mm}^{2}$

Ordering table

Connecting cable	ES12
Connecting cable 5 m	O94823

Precision single limit switches

These switches are used in mechanical and systems engineering for controlling and positioning tasks. The robust housings made of die-cast anodized aluminum are characterized by their high level of mechanical endurance and corrosion resistance.

Features

- Six basic types in die-cast aluminum housings
- From the miniature version $40 \times 40 \mathrm{~mm}$ to the standard size according to DIN 43693
- Mechanical life up to 30 million operating cycles

V Versions with safety function for mechanical and personal protection

- Four different plunger types
- Cable entry or M12 plug connection
- Temperature range $-40^{\circ} \mathrm{C}$ to $+180^{\circ} \mathrm{C}$

EUCHNER

EUCHNER

Precision single limit switches

> Plunger material stainless steel

(CCC) CHL $^{4)}$

For temperatures up to $180^{\circ} \mathrm{C}$

Design N01

Cable entry M12 $\times 1.5$

Dimension drawings

Plunger depending on desig
Dog Free position dimension same for all plungers

Wiring diagrams
ES550/ES562

Design N01
Cable entry M12 x 1.5

ES572

Technical data

Housing material		Die-cast aluminum, anodized		Die-cast aluminum, anodized		
Degree of protection acc. to IEC 60529		IP 67		IP 67		
Ambient temperature	[${ }^{\circ} \mathrm{C}$]	$-5 \ldots+80$		$-5 \ldots+180$		
Plunger type		Chisel	Ball	Chisel	Roller	Ball
Operating point accuracy ${ }^{1)}$	[mm]	± 0.02	± 0.03	± 0.02	± 0.05	± 0.03
Approach speed, max. ${ }^{\text {2 }}$	[m/min]	20	8	20	50	8
Approach speed, min.	[m/min]	0.01		0.01		
Actuating force, max.	[N]	15		15		
Switching element		ES550	ES562	ES572		
Switching contact		1 changeover contact		1 changeover contact		
Switching principle		Snap-action switching contact		Snap-action switching contact		
Mechanical life		1×10^{7} operating cycles		$\begin{aligned} & 5 \times 10^{5} \text { operating cycles at }-5 \ldots+125^{\circ} \mathrm{C}, \\ & 200 \mathrm{~h} \text { at }+180^{\circ} \mathrm{C} \end{aligned}$		
Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}$	[kV]	2.5		2.5		
Rated insulation voltage U_{i}	[V]	250		250		
Utilization category acc. to IEC 60947-5-1		$\begin{aligned} & \mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} 230 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A} \\ & \mathrm{DC}-13 \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A} \end{aligned}$	$\begin{gathered} \text { DC-13 } U_{e} 30 \mathrm{~V} \mathrm{I}_{\mathrm{e}} \\ 100 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & A C-15 U_{e} 230 V I_{e} 4 \mathrm{~A} \\ & D C-13 U_{e} 24 \mathrm{~V} I_{e} 1 \mathrm{~A} \end{aligned}$		
Contact material		Silver, gold-plated	Gold alloy	Fine silver		
Switching current, min., at switching voltage	[mA]	10	5	10		
	[V DC]	24	5	12		
Short circuit protection (control circuit fuse)	[A gG]	6	0.125	5		
Connection		Soldered connection, $1.0 \mathrm{~mm}^{2} \mathrm{max}$.		Soldered connection, $1.0 \mathrm{~mm}^{2} \mathrm{max}$.		

1) The reproducible operating point accuracy relates to axial actuation, after run-in of approx. 2,000 operating cycles.
2) The approach speed applies to a trip dog approach angle of $30^{\circ}, 100 \mathrm{~mm}$ long, hardened and ground.
3) Mating connector see page A-44 to A-46.

Ordering table

Plunger type		ES550	ES562	ES572
Chisel plunger	$\sum^{120^{\circ}}$	$\begin{aligned} & 084902{ }^{4)} \\ & \text { N01D550-M } \end{aligned}$	$\begin{gathered} 087151 \\ \text { N01D562-M } \end{gathered}$	$\begin{gathered} 087162 \\ \text { N01D572-M } \end{gathered}$
Roller plunger	年 $R=2.5 \mathrm{~mm}$	$\begin{aligned} & \mathbf{0 8 4 9 0 3}^{41} \\ & \text { N01R550-M } \end{aligned}$	$\begin{gathered} 085243 \\ \text { N01R562-M } \end{gathered}$	$\begin{gathered} 087163 \\ \text { NO1R572-M } \end{gathered}$
Ball plunger	$\frac{4}{4}$	$\begin{aligned} & 084904{ }^{4)} \\ & \text { N01K550-M } \end{aligned}$	$\begin{gathered} 087152 \\ \text { N01K562-M } \end{gathered}$	$\begin{gathered} 087164 \\ \text { NO1K572-M } \end{gathered}$

4) CCC approval only for switching element ES550
(a) $\operatorname{FH}[$)

Design N01

Cable gland M12 1.5

Dimension drawings

Wiring diagrams

(cc) EHI =

Design NO1

Connecting cable, length 5 m

Design NO1
M12 plug adjustable, 4-pin + PE

ES550	ES550	ES550	ES562
$\begin{gathered} 085703^{4)} \\ \text { N01D550-MC2018 } \end{gathered}$	$\begin{gathered} 088978 \\ \text { NO1D550X5000-M } \end{gathered}$	$\begin{gathered} 088623 \\ \text { N01D550SVM5-M } \end{gathered}$	-
$\begin{gathered} 094856{ }^{4)} \\ \text { NO1R550-MC2018 } \end{gathered}$	$\begin{aligned} & 088982 \\ & \text { N01R550X5000-M } \end{aligned}$	$\begin{aligned} & 088622 \\ & \text { N01R550SVM5-M } \end{aligned}$	$\begin{gathered} 093426 \\ \text { N01R562SVM5-M } \end{gathered}$
$\begin{gathered} 089619^{4)} \\ \text { N01K550-MC2018 } \end{gathered}$	$\begin{gathered} 088986 \\ \text { NO1K550X5000-M } \end{gathered}$	$\begin{gathered} 088624 \\ \text { N01K550SVM5-M } \end{gathered}$	-

Precision single limit switches

Plunger material stainless steel

For temperatures up to $125^{\circ} \mathrm{C}$
EAL [©

Design N01

M12 plug adjustable, 4-pin + PE

Dimension drawings

Wiring diagrams

Technical data

Housing material		Die-cast aluminum, anodized	
Degree of protection acc. to IEC 60529		IP 65	
Ambient temperature	[$\left.{ }^{\circ} \mathrm{C}\right]$	$-5 \ldots+125$	
Plunger type		Roller	
Operating point accuracy ${ }^{1)}$	[mm]	± 0.05	
Approach speed, max. ${ }^{2 /}$	[$\mathrm{m} / \mathrm{min}$]	50	
Approach speed, min.	[$\mathrm{m} / \mathrm{min}$]	0.01	
Actuating force, max.	[N]	15	
Switching element		ES593	
Switching contact		1 changeover contact	
Switching principle		Snap-action switching contact	
Mechanical life		5×10^{5} operating cycles at $-5 \ldots+125^{\circ} \mathrm{C}$, $30,000 \mathrm{~h}$ at $+100^{\circ} \mathrm{C} / 8,000 \mathrm{~h}$ at $+125^{\circ} \mathrm{C}$	
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	[kV]	1.5	
Rated insulation voltage U_{i}	[V]	50	
Utilization category acc. to IEC 60947-5-1		DC-13 $\mathrm{U}_{\mathrm{e}} 24 \mathrm{VI} 1 \mathrm{l}$	
Contact material		Silver, gold-plated	
Switching current, min., at switching voltage	[mA]	10	
	[V DC]	24	
Short circuit protection (control circuit fuse)	[A gG]	2	
Connection		Plug connector M12 ${ }^{\text {3) }}$	

1) The reproducible operating point accuracy relates to axial actuation, after run-in of approx. 2,000 operating cycles.
2) The approach speed applies to a trip dog approach angle of $30^{\circ}, 100 \mathrm{~mm}$ long, hardened and ground.
3) The following mating connectors can be used: 136960, 136961, 136962, 136963 (see page A-45 and A-46).

Ordering table

Plunger type		ES550
Chisel plunger	R	-
Roller plunger	R $=2.5 \mathrm{~mm}$	$\mathbf{1 2 8 0 7 0}$
Ball plunger	NO1R593-MC2445	

Precision single limit switches

- Plunger material stainless steel

To achieve the positively driven travel, the dimension (11-0,5 must be maintained by the trip dog. Actuating elements such as cam approach guides must be positively mounted in accordance with EN ISO 14119, i.e. riveted, welded or otherwise secured against becoming loose.

Design N01
M12 plug, 4-pin

Dimension drawings

Plunger depending on design

Wiring diagrams

For operating voltage 230 V
(CC) CH ($=\mathrm{CHLs}_{\text {usit }}^{4)}$

Design N01

M12 plug, 4-pin + PE

Technical data

Housing material		Die-cast aluminum, anodized			Die-cast aluminum, anodized		
Degree of protection acc. to IEC 60529		IP 67 Mating connector inserted and screwed tight			IP 67Mating connector inserted and screwed tight		
Ambient temperature	[${ }^{\circ} \mathrm{C}$]	-5 $\ldots+80$			$-5 \ldots+80$		
Plunger type		Chisel	Roller	Ball	Chisel	Roller	Ball
Operating point accuracy ${ }^{1 /}$	[mm]	± 0.02	± 0.05	± 0.03	± 0.02	± 0.05	± 0.03
Approach speed, max. ${ }^{2}$	[m/min]	20	50	8	20	50	8
Approach speed, min.	[m/min]	0.01			0.01		
Actuating force, max.	[N]	15			15		
Switching element		ES550			ES550		
Switching contact		1 changeover contact			1 changeover contact		
Switching principle		Snap-action switching contact			Snap-action switching contact		
Mechanical life		1×10^{7} operating cycles			1×10^{7} operating cycles		
Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}$	[kV]	2.0			1.5		
Rated insulation voltage U_{i}	[V]	50			250		
Utilization category acc. to IEC 60947-5-1		DC-13 $\mathrm{U}_{\mathrm{e}} 24 \mathrm{VI} \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$			$\begin{aligned} & A C-15 U_{e} 230 V I_{e} 2 \mathrm{~A} \\ & D C-13 U_{e} 24 \mathrm{~V} I_{e} 2 \mathrm{~A} \end{aligned}$		
Contact material		Silver, gold-plated			Silver, gold-plated		
Switching current, min.,	[mA]	10			10		
at switching voltage	[DC$]$	24			24		
Short circuit protection (control circuit fuse)	[A gG]	4			4		
Connection		Plug connector M12 ${ }^{3 /}$			Plug connector M12, B-coded ${ }^{31}$		

1) The reproducible operating point accuracy relates to axial actuation, after run-in of approx. 2,000 operating cycles.
2) The approach speed applies to a trip dog approach angle of $30^{\circ}, 100 \mathrm{~mm}$ long, hardened and ground.
3) Mating connector see page A-44 to A-46.
4) 30 V AC Class 2 / 24 V DC Class 2

Ordering table

Plunger type		ES550	ES550
Chisel plunger	$\overbrace{}^{120^{\circ}}$	$\begin{gathered} 091003 \\ \text { NO1D550-MC1526 } \end{gathered}$	-
Roller plunger	$\mathrm{R}=2.5 \mathrm{~mm}$	$\begin{gathered} 091001 \\ \text { NO1R550-MC1526 } \end{gathered}$	$\begin{gathered} 091257 \\ \text { NO1R550SEM5-M } \end{gathered}$
Ball plunger	$\xrightarrow{4}$	$\begin{gathered} 091002 \\ \text { NO1K550-MC1526 } \end{gathered}$	091258 N01K550SEM5-M

With safety function $\mathrm{CA} \times$	EHI	Larger connection space, robust screw terminal
Design NB01 Cable entry M12 x 1.5	Design NBO1 Cable entry M12 x 1.5	Design NB01 Cable gland M12 x 1.5
Dimension drawings Plunger depending on design	Plunger depending on design	Plunger depending on design
Wiring diagrams		
Die-cast aluminum, anodized	Die-cast aluminum, anodized	Die-cast aluminum, anodized
IP 67	IP 67	IP 67
$-25 \ldots+60$	$-5 \ldots+80$	$-5 \ldots+80$
Chisel \quad Roller	Chisel \quad Roller \quad Ball	Roller
	± 0.02 ± 0.05 ± 0.03	± 0.05
20 50	20 50 8	50
0.01	0.01	0.01
15	15	15
ES588	ES556	ES620
$1 \mathrm{NC} \Theta$	1 changeover contact	1 changeover contact
Slow-action switching contact	Snap-action switching contact	Snap-action switching contact
1×10^{7} operating cycles	1×10^{7} operating cycles	1×10^{7} operating cycles
2.5	2.5	2.5
250	250	250
$\begin{gathered} \text { AC-15 } U_{e} 230 V I_{e} 4 \mathrm{~A} \\ \text { DC-13 } U_{e} 24 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A} \end{gathered}$	$\begin{gathered} A C-15 U_{e} 230 V I_{e} 2 A \\ D C-13 U_{e} 24 V I_{e} 2 A \end{gathered}$	$\begin{gathered} A C-15 U_{e} 230 V I_{e} 2 A \\ D C-13 U_{e} 24 V I_{e} 2 A \end{gathered}$
Fine silver	Silver, gold-plated	Silver, gold-plated
1	10	10
5	24	24
10	6	6
Screw terminal, $1.0 \mathrm{~mm}^{2} \mathrm{max}$.	1.3 mm hexagon socket screw terminal/screw terminal, $1.0 \mathrm{~mm}^{2}$ max.	Screw terminal, $1.0 \mathrm{~mm}^{2} \mathrm{max}$.

ES588	ES556	ES620
$\mathbf{0 8 8 5 8 4}$	085245	-
NB01D588-M	NB01D556-M	085246
0885883	NB01R556-M	085247
-	NB01K556-M	NB01R620-MC2276

Precision single limit switches
> Plunger material stainless steel

To achieve the positively driven travel, the dimension (12-0,5 must be maintained by the trip dog. Actuating elements such as cam approach guides must be positively mounted in accordance with EN ISO 14119, i.e. riveted, welded or otherwise secured against becoming loose.
(CC) ${ }^{4)}$ EFI (

Design SNO1
Cable entry M16 x 1.5

Dimension drawings

Wiring diagrams

ETH = $\mathrm{ULO}_{\text {USTED }}^{\mathrm{U}}$

Design SNO1

M12 plug adjustable, 4-pin + PE

Technical data

Housing material		Die-cast aluminum, anodized		Die-cast aluminum, anodized		
Degree of protection acc. to IEC 60529		IP 67		IP 67Mating connector inserted and screwed tight		
Ambient temperature	[$\left.{ }^{\circ} \mathrm{C}\right]$	-5 ... +80		-5 ... +80		
Plunger type		Chisel	er Ball	Chisel	Roller	Ball
Operating point accuracy ${ }^{1)}$	[mm]	± 0.02	俍	± 0.02	± 0.05	± 0.03
Approach speed, max. ${ }^{\text {2 }}$	[m/min]	20	8	20	50	8
Approach speed, min.	[m/min]	0.01		0.01		
Actuating force, max.	[N]	15		15		
Switching element		ES553	ES558	ES558		
Switching contact		1 changeover contact	$1 \mathrm{NO}+1 \mathrm{NC}$	1 NO + 1 NC		
Switching principle		Snap-action switching contact		Snap-action switching contact		
Mechanical life		1×10^{7} operating cycles		1×10^{7} operating cycles		
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	[kV]	2.5		1.5		
Rated insulation voltage U_{i}	[V]	250		30		
Utilization category acc. to IEC 60947-5-1		$\begin{gathered} \text { AC-15 } U_{e} 230 V I_{e} 2 A \\ D C-13 U_{e} 24 V I_{e} 2 A \end{gathered}$	$\begin{gathered} \hline \text { AC-15 } U_{e} 230 V I_{e} 4 \mathrm{~A} \\ \text { DC-13 } U_{e} 24 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A} \end{gathered}$	$\begin{aligned} & A C-15 U_{e} 36 V I_{e} 4 A \\ & D C-13 U_{e} 24 V I_{e} 3 A \\ & \hline \end{aligned}$		
Contact material		Silver, gold-plated	Silver	Silver		
Switching current, min., at switching voltage	[mA]	10	10	10		
	[DC$]$	24	5	5		
Short circuit protection (control circuit fuse)	[A gG]	6	4	4		
Connection		Screw terminal, $1.0 \mathrm{~mm}^{2}$ max.	Soldered connection, $1.0 \mathrm{~mm}^{2}$ max.	Plug connector M12 ${ }^{3 /}$		

1) The reproducible operating point accuracy relates to axial actuation, after run-in of approx. 2,000 operating cycles.
2) The approach speed applies to a trip dog approach angle of $30^{\circ}, 100 \mathrm{~mm}$ long, hardened and ground.
3) Mating connector see page A-44 to A-46.

Ordering table

Plunger type	ES553	ES558	ES558
Chisel plunger	$\begin{gathered} 085252^{4)} \\ \text { SNO1D553-M } \end{gathered}$	$\begin{gathered} 085260 \\ \text { SNO1D558-M } \end{gathered}$	$\begin{gathered} 088625 \\ \text { SNO1D558SVM5-M } \end{gathered}$
Roller plunger $\mathrm{R}=2.5 \mathrm{~mm}$	$\begin{aligned} & 085253^{41} \\ & \text { SNO1R533-M } \end{aligned}$	$\begin{aligned} & 085261 \\ & \text { SNO1R558-M } \end{aligned}$	$\begin{gathered} 088626 \\ \text { SNO1R558SVM5-M } \end{gathered}$
Ball plunger	$\begin{aligned} & 0852544^{4)} \\ & \text { SNO1K533-M } \end{aligned}$	$\begin{aligned} & 085262 \\ & \text { SNO1K558-M } \end{aligned}$	$\begin{gathered} 088627 \\ \text { SNO1K558SVM5-M } \end{gathered}$

[^1]
Design SNO1

Connecting cable, length 2 m

Dimension drawings

Wiring diagrams

Die-cast aluminum, anodized
-5 P 67
Roller
± 0.05
50
0.01
15
ES558
$1 \mathrm{NO}+1 \mathrm{NC}$
Snap-action switching contact
1×10^{7} operating cycles
2.5
250
AC-15 $\mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}$ Ie 4 A
$\mathrm{DC}-13 \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V} \mathrm{I} 3 \mathrm{~A}$
Silver
10
5
4

PUR cable $5 \times 0.5 \mathrm{~mm}^{2}$

Precision single limit switches

- Plunger material stainless steel

Housing according to DIN 43693
Low temperature down to $-40^{\circ} \mathrm{C}$

With safety switching element
© EHI -
Design N1A
Cable entry M16 x 1.5

Dimension drawings

Wiring diagrams

With safety switching element, silicone diaphragm (interior) and
(ccc) EHL =

Design N1A

Cable entry M16 $\times 1.5$

Technical data

1) The reproducible operating point accuracy relates to axial actuation, after run-in of approx. 2,000 operating cycles.
2) The approach speed applies to a trip dog approach angle of $30^{\circ}, 100 \mathrm{~mm}$ long, hardened and ground.
3) Version with bearing for high speeds and long travel distances on request.

Ordering table

Plunger type	ES508	ES514	ES508
Chisel plunger	$\begin{gathered} 083886 \\ \text { N1AD508-M } \end{gathered}$	$\begin{gathered} 083849 \\ \text { N1AD514-M } \end{gathered}$	$\begin{gathered} 103237 \\ \text { N1AD508-MC2222 } \end{gathered}$
Roller plunger	$\begin{gathered} 083887 \\ \text { N1AR508-M } \end{gathered}$	$\begin{gathered} 078487 \\ \text { N1AR514-M } \end{gathered}$	$\begin{gathered} 103221 \\ \text { N1AR508-MC2222 } \end{gathered}$
Ball plunger	-	-	-
Dome plunger	$\begin{gathered} 087205 \\ \text { N1AW508-M } \end{gathered}$	$\begin{gathered} 083850 \\ \text { N1AW514-M } \end{gathered}$	$\begin{gathered} 103222 \\ \text { N1AW508-MC2222 } \end{gathered}$

With safety switching element,
silicone diaphragm (internal and ex-
ternal) and low-temperature grease
ternal) and low-temperature grease

Design N1A

Cable entry M16 x 1.5

Dimension drawings

Wiring diagrams

(CC) EHI (=)

Design N1A

Cable entry M16 x 1.5

With safety switching element (CC) EH[$=$: (W)

Design N1A
M12 plug adjustable, 4-pin + PE

Die-cast aluminum, anodized	Die-cast aluminum, anodized			Die-cast aluminum, anodized		
IP 67	IP 67			IP 67Mating connector inserted and screwed tight		
$-30 \ldots+80$	$-5 \ldots+80$			$-25 \ldots+80$		
Chisel \quad Roller	Chisel	Roller 3)	Ball	Chisel	Roller	Dome
	± 0.002	± 0.01	± 0.01	± 0.002	± 0.01	± 0.002
40 80	40	80	10	40	80	10
0.01	0.01			0.01		
≥ 30	≥ 20			≥ 30		
ES514	ES502E ${ }^{4)}$			ES514		
$1 \mathrm{NO}+1 \mathrm{NC} \Theta$	$1 \mathrm{NO}+1 \mathrm{NC}$			$1 \mathrm{NO}+1 \mathrm{NC} \Theta$		
Snap-action switching contact	Snap-action switching contact			Snap-action switching contact		
1×10^{6} operating cycles	30×10^{6} operating cycles			1×10^{6} operating cycles		
2.5	2.5			1.5		
250	250			30		
$\begin{gathered} \text { AC-15 } U_{e} 230 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 2.5 \mathrm{~A} \\ \text { DC-13 } U_{e} 24 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 6 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} A C-12 U_{e} 250 V I_{e} 8 A / A C-15 U_{e} 230 V I_{e} 6 A \\ D C-13 U_{e} 24 V I_{e} 6 A \end{gathered}$			$\begin{aligned} & A C-15 U_{e} 36 V I_{e} 2.5 A \\ & D C-13 U U_{e} 24 V I_{e} 4 A \end{aligned}$		
Silver, gold-plated	Silver, gold-plated			Silver, gold-plated		
5	10			5		
24	24			24		
6	8			6		
Screw terminal $0.34 \ldots 1.5 \mathrm{~mm}^{2}$	Screw terminal $0.34 \ldots 1.5 \mathrm{~mm}^{2}$			Plug connector M12 ${ }^{5}$		

4) Version with LED function display AC/DC $10-60 \mathrm{~V}$ or $\mathrm{AC} 110 / 230 \mathrm{~V}$ on request.
5) Mating connector see page A-44 to A-46.

ES514	ES502E	ES514
110462	079265	087603
N1AD514AM-MC2222	N1AD502-M	N1AD514SVM5-M
N103247	078485	087604
-	N1AR502-M	N1AR514SVM5-M
	N1AK502-M	-
-	-	N1AW514SVM5-M

Precision single limit switches

- Plunger material stainless steel

Housing according to DIN 43693

To achieve the positively driven travel, the dimension (31-0.5) must be maintained by the trip dog. Actuating elements such as cam approach guides must be positively mounted in accordance with EN ISO 14119, i.e. riveted, welded or otherwise secured against becoming loose.

Technical data

Housing material		Die-cast aluminum, anodized			Die-cast aluminum, anodized		
Degree of protection acc. to IEC 60529		IP 67Mating connector inserted and screwed tight			IP 67Mating connector inserted and screwed tight		
Ambient temperature	[${ }^{\circ} \mathrm{C}$]	$-5 \ldots+80$			-5 ... +80		
Plunger type		Chisel	Roller	Ball	Chisel	Roller	Ball
Operating point accuracy ${ }^{1)}$	[mm]	± 0.002	± 0.01	± 0.01	± 0.002	± 0.01	± 0.01
Approach speed, max. ${ }^{2}$	[m/min]	40	80	10	40	80	10
Approach speed, min.	[m/min]	0.01			0.01		
Actuating force, max.	[N]	≥ 20			≥ 20		
Switching element		ES502E			ES502E		
Switching contact		$1 \mathrm{NO}+1 \mathrm{NC}$			$1 \mathrm{NO}+1 \mathrm{NC}$		
Switching principle		Snap-action switching contact			Snap-action switching contact		
Mechanical life		30×10^{6} operating cycles			30×10^{6} operating cycles		
Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}$	[kV]	1.5			1.5		
Rated insulation voltage U_{i}	[V]	50			50		
Utilization category acc. to IEC 60947-5-1		$\begin{aligned} & A C-15 U_{e} 30 V I_{e} 4 A \\ & D C-13 U_{e} 24 V I_{e} 4 A \end{aligned}$			AC-15 $\mathrm{U}_{\mathrm{e}} 30 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 4 \mathrm{~A}$ DC-13 Ue 24V le 4A		
Contact material		Silver, gold-plated			Silver, gold-plated		
Switching current, min.,	[mA]	10			10		
at switching voltage	[V DC]	24			24		
Short circuit protection (control circuit fuse)	[A gG]	8			8		
Connection		Plug connector M12 ${ }^{4)}$			Plug connector M12 ${ }^{4)}$		

1) The reproducible operating point accuracy relates to axial actuation, after run-in of approx. 2,000 operating cycles.
2) The approach speed applies to a trip dog approach angle of $30^{\circ}, 100 \mathrm{~mm}$ long, hardened and ground.

Ordering table

Plunger type	ES502E	ES502E
Chisel plunger	$\begin{gathered} 087487 \\ \text { N1AD502SVM5-M } \end{gathered}$	091471 N1AD502SVM5-MC1883
	$\begin{gathered} 087488 \\ \text { N1AR502SVM5-M } \end{gathered}$	-
Ball plunger	$\begin{gathered} 087489 \\ \text { N1AK502SVM5-M } \end{gathered}$	$\begin{gathered} 087496 \\ \text { N1AK502SVM5-MC1883 } \end{gathered}$
Extended roller plunger	-	-

With safety switching element
(c) E H[
(cc) $\mathrm{EHL}=$
With exterior diaphragm
© \times EfI $=$

Design N1A, extended roller plunger
Cable entry M16 x 1.5

Wiring diagrams

Design N1A
Cable entry M16 x 1.5

Die-cast aluminum, anodized		Die-cast aluminum, anodized	Die-cast aluminum, anodized	
IP 67		IP 67	IP 67	
$-25 \ldots+80$		$-5 \ldots+80$		$-25 \ldots+80$ (ES508)
Extended roller		Extended roller	-5 ... +80 (ES502E)	- Ball
0.1		0.1	$\pm 0.002 \quad \pm 0.01$	(10.01
20		20	40×80	10
0.01		0.01	0.01	
≥ 15	≥ 30	≥ 20	≥ 20	≥ 15
ES508	ES514	ES502E ${ }^{\text {3 }}$	ES502E	ES508
$1 \mathrm{NC} \Theta$	$1 \mathrm{NO}+1 \mathrm{NC} \Theta$	$1 \mathrm{NO}+1 \mathrm{NC}$	$1 \mathrm{NO}+1 \mathrm{NC}$	$1 \mathrm{NC} \Theta$
Slow-action switching con.	Snap-action switching con.	Snap-action switching contact	Snap-action switching con. Slown	Slow-action switching con.
30×10^{6} operating cycles	1×10^{6} operating cycles	30×10^{6} operating cycles	30×10^{6} operating cycles	
4		2.5	2.5	4
250		250	250	
$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} 230 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 6 \mathrm{~A}$ DC-13 $U_{e} 24 V I_{e} 6 A$	$\begin{gathered} A C-15 U_{e} 230 V I_{e} 2.5 A \\ \text { DC-13 } U_{e} 24 V I_{e} 6 A \end{gathered}$	AC-12 $\mathrm{U}_{\mathrm{e}} 250 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 8 \mathrm{~A}$ AC-15 $U_{e} 230 \mathrm{~V} I_{e} 6 A$ DC-13 $\mathrm{U}_{\mathrm{e}} 24 \mathrm{VI}_{\mathrm{e}} 6 \mathrm{~A}$	AC-12 $\mathrm{U}_{\mathrm{e}} 250 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 8 \mathrm{~A}$ AC-15 $U_{e} 230 V I_{e} 6 A$ DC-13 $U_{e} 24 V I_{e} 6 A$	$\begin{aligned} & A C-15 U_{e} 230 V I_{e} 6 A \\ & D C-13 U_{e} 24 V I_{e} 6 A \end{aligned}$
Silver, gold-plated		Silver, gold-plated	Silver, gold-plated	
10	5	10	10	
24	24	24	24	
10	6	8	8	10
Screw terminal $0.34 \ldots 1.5 \mathrm{~mm}^{2}$		Screw terminal $0.34 \ldots 1.5 \mathrm{~mm}^{2}$	Screw terminal $0.34 \ldots 1.5 \mathrm{~mm}^{2}$	

4) Version with LED function display $\mathrm{AC} / \mathrm{DC} 10-60 \mathrm{~V}$ or $\mathrm{AC} 110 / 230 \mathrm{~V}$ on request
5) Mating connector see page $A-44$ to $A-46$.

ES508	ES514	ES502E	ES502E	ES508
-	-	-	-	$\begin{gathered} 090546 \\ \text { N1AD508AM-M } \end{gathered}$
-	-	-	$\begin{gathered} 090541 \\ \text { N1AR502AM-M } \end{gathered}$	-
-	-	-	-	-
$\begin{gathered} 087147 \\ \text { N1ARL508-M } \end{gathered}$	$\begin{gathered} 087204 \\ \text { N1ARL514-M } \end{gathered}$	$\begin{aligned} & 083848 \\ & \text { N1ARL502-M } \end{aligned}$	-	-

Precision single limit switches
Ef[
EHI

- Plunger material stainless steel

Design N10
Cable entry M20 x 1.5

Dimension drawings

Wiring diagrams

Design N10, extended roller plunger Cable entry M20 x 1.5

Technical data

Housing material		Die-cast aluminum, anodized			Die-cast aluminum, anodized
Degree of protection acc. to IEC 60529		IP 67			IP 67
Ambient temperature	[$\left.{ }^{\circ} \mathrm{C}\right]$	$-5 \ldots+80$			$-5 \ldots+80$
Plunger type		Chisel	Roller	Ball	Extended roller
Operating point accuracy ${ }^{1)}$	[mm]	± 0.002	± 0.01	± 0.01	± 0.1
Approach speed, max. ${ }^{\text {2 }}$	[m/min]	40	80	10	20
Approach speed, min.	[m/min]	0.01			0.01
Actuating force, max.	[N]	≥ 20			≥ 20
Switching element		ES502V			ES502V
Switching contact		$1 \mathrm{NO}+1 \mathrm{NC}$			$1 \mathrm{NO}+1 \mathrm{NC}$
Switching principle		Snap-action switching contact			Snap-action switching contact
Mechanical life		30×10^{6} operating cycles			30×10^{6} operating cycles
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	[kV]	2.5			2.5
Rated insulation voltage U_{i}	[V]	250			250
Utilization category acc. to IEC 60947-5-1		$\begin{gathered} A C-12 U_{e} 230 V I_{e} 16 \mathrm{~A} / A C-15 \mathrm{U}_{\mathrm{e}} 230 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 10 \mathrm{~A} \\ \mathrm{DC}-13 \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 6 \mathrm{~A} \\ \hline \end{gathered}$			$\begin{gathered} A C-12 U_{e} 230 V I_{e} 16 \mathrm{~A} / A C-15 \mathrm{U}_{\mathrm{e}} 230 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 10 \mathrm{~A} \\ D C-13 \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 6 \mathrm{~A} \end{gathered}$
Contact material		Silver, gold-plated			Silver, gold-plated
Switching current, min., at switching voltage	[mA]	20			20
	[V DC]	24			24
Short circuit protection (control circuit fuse)	[A gG]	16			16
Connection		Screw terminal, $1.5 \mathrm{~mm}^{2} \mathrm{max}$.			Screw terminal, $1.5 \mathrm{~mm}^{2}$ max.

1) The reproducible operating point accuracy relates to axial actuation, after run-in of approx. 2,000 operating cycles.
2) The approach speed applies to a trip dog approach angle of $30^{\circ}, 100 \mathrm{~mm}$ long, hardened and ground.

Ordering table

Plunger type	ES502V	ES502V
Chisel plunger	$\begin{gathered} 086293 \\ \text { N10D-M } \end{gathered}$	-
Roller plunger	$\begin{gathered} 086294 \\ \text { N10R-M } \end{gathered}$	-
Ball plunger	$\begin{gathered} 088589 \\ \text { N1OK-M } \end{gathered}$	-
Extended roller plunger	-	088587 N10RL-M

Design N11
 Cable entry M20 x 1.5

Wiring diagrams

Design N11, extended roller plunger

Cable entry M20 x 1.5

Die-cast aluminum, anodized			Die-cast aluminum, anodized
IP 67			IP 67
$-5 \ldots+80$			$-5 \ldots+80$
Chisel	Roller	Ball	Extended roller
± 0.002	± 0.01	± 0.01	± 0.1
40	80	10	20
0.01			0.01
≥ 20			≥ 20
ES502V			ES502V
$1 \mathrm{NO}+1 \mathrm{NC}$			$1 \mathrm{NO}+1 \mathrm{NC}$
Snap-action switching contact			Snap-action switching contact
30×10^{6} operating cycles			30×10^{6} operating cycles
2.5			2.5
250			250
$\begin{gathered} A C-12 U_{e} 230 V I_{e} 16 \mathrm{~A} / A C-15 U_{e} 230 V \mathrm{I}_{\mathrm{e}} 10 \mathrm{~A} \\ D C-13 \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V} \mathrm{I}_{\mathrm{e}} 6 \mathrm{~A} \end{gathered}$			$A C-12 U_{e} 230 V I_{e} 16 A / A C-15 U_{e} 230 V I_{e} 10 A$ $D C-13 U_{e} 24 V I_{e} 6 A$
Silver, gold-plated			Silver, gold-plated
20			20
24			24
16			16
Screw terminal, $1.5 \mathrm{~mm}^{2}$ max.			Screw terminal, $1.5 \mathrm{~mm}^{2}$ max.

ES502V	ES502V
086298 N11D-M	-
086313 N11R-M	-
088585	
N11K-M	-
-	086299

Inductive single limit switches

Inductive single limit switches are non-contact in operation. They are used as an alternative to mechanical switches. The main advantage is their wear-free operating mode. They are noted for their insensitivity to corrosive ambient conditions and their virtually unlimited mechanical life.

Features

- High approach speed and high switching frequency
- Resistant to strong vibrations and coarse contamination
- Resistant to most cutting oils and coolants
- Replacement for precision single limit switch of the same design

Inductive single limit switch design ENA, DC version

Housing according to DIN 43693
Rated operating distance 5 mm
LED function display optional

Design ENA
Cable entry M16 x 1.5

Dimension drawings

Wiring diagrams

DC NO + NC contacts, PNP

Technical data

Ordering table

LED function display

with	Order no.	
	Item	ENA 086280
Onder no.	ENA10B050UP048LKK10-M	

```
- Compact design with connecting cable
or plug connector
```


Rated operating distance 5 mm

``` LED function display
```


Design ESN

Connecting cable 5 m PUR
Dimension drawings

Wiring diagrams

DC NO + NC contacts, PNP

Design ESN

Plug connector M12, 4-pin

Plug connector see page A-44 to A-46

Technical data

Rated operating distance S_{n}	[mm]	5	5
Assured operating distance S_{a}	[mm]	0... 4	0... 4
Switching function		$\mathrm{NO}+\mathrm{NC}$	$\mathrm{NO}+\mathrm{NC}$
Output		PNP	PNP
LED function display		Yes	Yes
Operating voltage U_{B}	[V]	DC $10 \ldots 55$	DC $10 \ldots 55$
Voltage drop U_{d}	[V]	≤ 2.5	≤ 2.5
Rated insulation voltage U_{i}	[V]	DC 60	DC 60
Rated operating current I_{e}	[mA]	≤ 250	≤ 250
Off-state current I_{r}	[mA]	≤ 0.05	≤ 0.05
No-load current Io	[mA]	≤ 15	≤ 15
Short circuit and overload protection, pulsed		Yes	Yes
Reverse polarity protection		Yes	Yes
Wire break safety		Yes	Yes
EMC compliance as per		IEC 60947-5-2	IEC 60947-5-2
Hysteresis H	[mm]	≤ 0.5	≤ 0.5
Repeat accuracy R	[\%]	≤ 5	≤ 5
Switching frequency f	[Hz]	≤ 500	≤ 500
Utilization category acc. to IEC 60947-5-2		DC-13	DC-13
Housing material		Die-cast aluminum, anodized	Die-cast aluminum, anodized
Material for the active face		PBT	PBT
Degree of protection acc. to IEC 60529		IP 67	IP 67
Ambient temperature T	[$\left.{ }^{\circ} \mathrm{C}\right]$	- $25 \ldots+70$	-25 $\ldots+70$
Connection		PUR cable 4×0.25	Plug connector M12 ${ }^{11}$
Weight	[kg]	0.3	0.3

1) Degree of protection guaranteed only on the use of the plug connectors on page $A-44$ to $A-46$.

Ordering table

Connection	
PUR cable 5 m	Order no.
$\left(4 \times 0.25 \mathrm{~mm}^{2}\right.$)	Item
Plug connector S01	Order no.
(M12, 4-pin)	Item

[^2]
Round connector M12

Straight design and elbow connector
Screw connection
Molded cable
4-pin and 5-pin

Straight plug connector M12
4-pin / 4-pin + PE

Wiring diagrams

Straight plug connector M12, coded 4-pin + PE

Technical data

Number of pins		4	4+PE	4+PE
Housing material	Grip	TPU self extinguishing		TPU self extinguishing
	Contact carrier	TPU self extinguishing		TPU self extinguishing
Sheath material		PUR, halogen free, flame retardant		PVC, halogen free, flame retardant
Sheath color		Black		Orange
Degree of protection acc. to IEC 60529 (inserted and screwed tight)		IP 67		IP 67
Ambient temperature	[$\left.{ }^{\circ} \mathrm{C}\right]$	$-25 \ldots+80$		$-25 \ldots+90$
Contact material		CuSn nickel-plated, $0.3 \mu \mathrm{~m}$ gold-plated		CuSn nickel-plated, $0.8 \mu \mathrm{~m}$ gold-plated
Connection cross-section	[mm^{2}]	4×0.34	5×0.5	$4 \times 0.34 / 1 \times 0.5$
Cable diameter	[mm]	6		5
Contact resistance	[m Ω]	≤ 5		≤ 5
Test voltage (60 s)	[kV eff]	2	1.5	2
Rated voltage	[V]	AC 250/DC 300	AC 30/DC 36	AC 250/DC 300
Rated current	[A]			4

Ordering table

Plug connector M12, without LED, connecting cable 5 m	$\mathbf{0 3 5 6 1 3}$ C-M12F0404X034PU05,-GA-035613	$\mathbf{0 7 3 4 6 1}$ C-M12F05-05X050PU05,0-GA-073461	$\mathbf{0 4 5 5 2 4}$ Plug connector M12, without LED, connecting cable 10 m$\quad-\quad-$
Plug connector M12, with three LEDs, connecting cable 5 m	-	-	-

Straight plug connector M12, A-coded 4-pin + PE

, 2 WH
\rightarrow BK
$3 \quad 3 \quad B$
5 GNYE

Right-angle plug connector M12
4-pin / 4-pin + PE

Dimension drawings

Wiring diagrams

Right-angle plug connector M12, coded 4-pin + PE

4+PE	4	4+PE	4+PE
TPE	TPU self extinguishing		TPU self extinguishing
PBT GF, LIL 94	TPU self extinguishing		TPU self extinguishing
TPE (high-temperature PUR)	PUR, halogen free, flame retardant		PVC, halogen-free, flame retardant
Black	Black		Orange
IP 65	IP 67		IP 67
$\begin{gathered} -30 \ldots+150 \text { (for } 2,000 \mathrm{~h}) \\ (+125 \text { for } 8,000 \mathrm{~h} /+100 \text { for } 30,000 \mathrm{~h}) \end{gathered}$	$-25 \ldots+80$		$-25 \ldots+90$
CuZn, CuBe	CuSn nickel-plated, $0.3 \mu \mathrm{~m}$ gold-plated		CuSn nickel-plated, $0.8 \mu \mathrm{~m}$ gold-plated
5×0.34	4×0.34	5×0.5	5×0.5
5.5	6		5
-	≤ 5		≤ 5
-	2	1.5	2
60	AC 250/DC 300	AC 30/DC 36	AC 250/DC 300
4			4

$\mathbf{1 3 6 9 6 0}$	$\mathbf{0 3 5 6 1 8}$	$\mathbf{0 7 3 4 6 2}$	$\mathbf{0 4 5 5 2 3}$
C-M12F05-05X034PU05,O-GA-136960	C-M12F04-04X034PU05,0-GA-035618	C-M12F05-05X050PU05,0-GA-073462	C-M12F05-05XDIFPV05,0-GA-045523
C-M12F05-05X034PU1000-GA-136961	-	-	-
	-	-	-

Ordering table

Plug connector M12, without LED, connecting cable 5 m	-	$\mathbf{1 3 6 9 6 2}$ Plug connector M12, without LED, connecting cable 10 m$\quad-\quad$ C-M12F05-05X034PU05,0-GA-136962

LED function display

On request, versions with voltage ranges AC 110/230 V are available.

Operating voltage [V]	Color	Item	Order no.
AC/DC 12-60	Red	LE 060 rt	$\mathbf{0 3 5 4 9 5}$
	Green	LE 060 gr	$\mathbf{0 3 5 4 9 6}$
	Yellow	LE 060 ge	$\mathbf{0 3 5 4 9 7}$

Cable glands

Material nickel-plated brass, degree of protection IP 67

Item	Metric thread \mathbf{M}	Cable outer diam- eter $[\mathbf{m m}]$	\mathbf{A} $[\mathbf{m m}]$	\mathbf{B} $[\mathbf{m m}]$	\mathbf{E} $[\mathbf{m m}]$	SW $[\mathbf{m m}]$	Order no.
EKVM12/04	M12 $\times 1.5$	$4-6.5$	20	5	15.5	14	$\mathbf{0 8 6 3 2 7}$
EKVM16/04	M16 $\times 1.5$	$4-6.5$	20	6	20	18	$\mathbf{0 8 6 3 2 8}$
EKVM16/06	M16 $\times 1.5$	$6.5-9.5$	20	6	20	18	$\mathbf{0 8 6 3 3 0}$
EKVM20/06	M20 $\times 1.5$	$6.5-9.5$	20	6	24.4	22	$\mathbf{0 7 7 6 8 3}$

Additional products

Trip rails/trip dogs

U-trip rails

enable the trip dogs to be adjusted from the switch side. The trip dogs can be installed and adjusted quickly and easily in any location.

U-trip dogs

are designed for usage in U-trip rails. They have an expansion plate clamp and enable precise adjustment, even when the limit switch is activated.

For detailed information see catalog for multiple limit switches.

Appendix

Terms and explanations

Rated operating distance \mathbf{s}_{n}

The rated operating distance is a general variable used for identifying the operating distances. It does not take into account either the production tolerances or changes caused by external effects such as voltage and temperature.

Hysteresis H

The hysteresis is the difference in distance terms between the ON point as the test plate approaches and the OFF point as it moves away from the active face of the inductive switching element.

Operating voltage U_{B}

The operating voltage indicates the voltage range in which the inductive switching element functions reliably. The specified values represent limits without any tolerances. The values can be obtained by referring to the technical data for the switching element. In the case of two-wire switching elements, this is applicable only in series connection with the load.

Rated operating current I_{e}

The rated operating current is the nominal current that can load the inductive switching element in continuous operation.

Switch-on current I_{K}

The switch-on current is the maximum current that can flow in an AC 2 -wire switching element for a particular period at the moment it is switched on. The details in the technical data are valid for 20 ms .

Assured operating distance $\mathbf{s}_{\mathbf{a}}$

The assured operating distance is the operating distance at which correct operation of the inductive switching element is guaranteed within the permissible operating conditions (temperature and voltage).
The actuation distance is between 0 and 81% of the rated operating distance s_{n}.

Voltage drop U_{d}

The voltage drop is measured across the active output of the inductive switching element when the output is in the "active energized" condition and when the rated operating current l_{e} flows.

Off-state current I_{r}

The off-state current is the current that flows in the load circuit of an inductive switching element in the non-conducting condition. In practical terms, this current has to be taken into account only for two-wire switching elements.

Switching frequency f

The switching frequency is the maximum possible number of switching operations per second. It is determined according to IEC 60947-5-2, and is based on a mark-space ratio of 1:2. The switching frequency is a switch-specific variable and can be obtained by referring to the technical data for the switching element.

Repeat accuracy \mathbf{R}

The repeat accuracy is the reproducibility of the real operating distance s_{r} for two switching actions in succession within 8 hours at an operating temperature of $23 \pm 5^{\circ} \mathrm{C}$ and an operating voltage of $U B \pm 5 \%$.

Minimum operating current I_{m}

The minimum operating current is the minimum current required for the function of a 2 -wire switching element in active energized condition.

Ambient temperature T

The ambient temperature is the temperature range in which the reliable operation of the inductive switching element is guaranteed. This range is between - 25 and $+70^{\circ} \mathrm{C}$.

Temperature drift Δs

The temperature drift defines the offset in the switching point in $\mu \mathrm{m} / \mathrm{K}$ on a change in the ambient temperature from -25 to $+70^{\circ} \mathrm{C}$ under otherwise constant measurement conditions.

Suppressor circuits

The inductive switching elements are largely protected against external interference by use of various circuit techniques (suppressor circuits). For utilization category DC-13 the output is to be protected with a free-wheeling diode for inductive loads.

Short circuit and overload protection

The inductive switching elements are designed so that short circuits cannot damage the outputs. Pulsed short circuit protection is used. This means that the output transistor is switched off and on again in quick succession in the event of overloading or a short-circuit. In this way, it is possible to establish whether the fault is still present or has been rectified.

Transient protection

EUCHNER proximity switches are protected against interference caused by the occurrence of inductive voltage peaks in accordance with IEC 801-4. The respective values are specified in the technical data. Testing is performed in accordance with the stipulations in DIN VDE 0660, Part 208 and IEC 947-5-2.

Wire break safety

The EUCHNER proximity switches with wire break safety are designed such that on a wire break on any connection, the switch does not output a spurious signal.

Reverse polarity protection

Protection against reverse polarization of the operating voltage.

Index by item designation

Item	Order no.	Page
C-M12F04-04X034PU05,0-GA-035613	035613	A-44
C-M12F04-04X034PU05,0-GA-035618	035618	A-45
C-M12F04-04X034PU05,0-GA-041091	041091	A-46
C-M12F05-05X034PU05,0-GA-136960	136960	A-45
C-M12F05-05X034PU05,0-GA-136962	136962	A-46
C-M12F05-05X034PU10,0-GA-136961	136961	A-45
C-M12F05-05X034PU10,0-GA-136963	136963	A-46
C-M12F05-05X050PU05,0-GA-073461	073461	A-44
C-M12F05-05X050PU05,0-GA-073462	073462	A-45
C-M12F05-05XDIFPV0,50-GA-045524	045524	A-44
C-M12F05-05XDIFPV05,0-GA-045523	045523	A-45
EGM12-1200C1791	075556	A-16
EGM12-1200C1820	076464	A-16
EGM12-1200C2463	128196	A-17
EGM12-2500C2452	126384	A-17
EGM12-4000C1791	076154	A-16
EGM12SAM3C1868	077228	A-17
EGM12SEM4	082205	A-17
EGM12SEM4C1820	093733	A-17
EGM8-1000C2396	119345	A-16
EGT1/4A2000	001366	A-14
EGT1/4A2000C2079	094982	A-15
EGT1/4A2000C2137	102476	A-15
EGT1/4A5000	001368	A-14
EGT1/4ASEM4	033976	A-14
EGT1/4ASEM4C1802	075644	A-14
EGT1/4ASEM4C2088	095278	A-15
EGT1/4ASEM4C2137	098071	A-15
EGT1/4R2000	001371	A-14
EGT1/4R5000	001372	A-14
EGT1/4RSEM4	033982	A-14
EGT1/4RSEM4C2088	104316	A-15
EGT1/4RSEM4C2137	104372	A-15
EGT1-2000	001732	A-20
EGT1-5000	001733	A-20
EGT11A2NSFM5	093352	A-12
EGT11R2N50SAM4	084000	A-12
EGT11R2NSFM5	091848	A-12
EGT12A3000C2250	104223	A-10
EGT12A5000	082201	A-10
EGT12ARSEM4C1888	078483	A-13
EGT12ASFM5	075426	A-11
EGT12ASFM5C2083	095112	A-11
EGT12R5000	078848	A-10
EGT12RRSEM4C1888	079139	A-13
EGT12RSFM5	075427	A-11
EGT1M12-2000	092695	A-18
EGT1M12-5000	093364	A-18
EGT1M12SEM4	093365	A-18
EGT1SEM4	019727	A-20
EGT1SEM4C1613	054250	A-21
EGT1SEM4C1832	077347	A-21
EGT1SEM4C2221	102479	A-21
EGT2-2000	001864	A-22
EGT2-5000	001865	A-22
EGT2SEM4	052504	A-22
EGT4-10000	093967	A-23
EGT4-2000	094339	A-23
EGT4-5000	092026	A-23
EGZ12-12-5000	094823	A-24
EKVM12/04	086327	A-47
EKVM16/04	086328	A-47
EKVM16/06	086330	A-47

Item	Order no.	Page
EKVM20/06	077683	A-47
ENA10B050UP048LKK10-M	ENA 086280	A-42
ENA10B050UP048NKK10-M	ENA 086099	A-42
ESN10B050UP048LK05P-M	ESN 088771	A-43
ESN10B050UP048LKS01-M	ESN 088770	A-43
LE 060 ge	035497	A-47
LE 060 gr	035496	A-47
LE 060 rt	035495	A-47
N01D550-M	084902	A-26
N01D550-MC1526	091003	A-30
N01D550-MC2018	085708	A-27
N01D550SVM5-M	088623	A-27
N01D550X5000-M	088978	A-27
N01D562-M	087151	A-26
N01D572-M	087162	A-26
N01K550-M	084904	A-26
N01K550-MC1526	091002	A-30
N01K550-MC2018	089619	A-27
N01K550SEM5-M	091258	A-30
N01K550SVM5-M	088624	A-27
N01K550X5000-M	088986	A-27
N01K562-M	087152	A-26
N01K572-M	087164	A-26
N01R550-M	084903	A-26
N01R550-MC1526	091001	A-30
N01R550-MC2018	094856	A-27
N01R550SEM5-M	091257	A-30
N01R550SVM5-M	088622	A-27
N01R550X5000-M	088982	A-27
N01R562-M	085243	A-26
N01R562SVM5-M	093426	A-27
N01R572-M	087163	A-26
N01R593-MC2445	128070	A-28
N10D-M	086293	A-38
N1OK-M	088589	A-38
N10R-M	086294	A-38
N10RL-M	088587	A-38
N11D-M	086298	A-39
N11K-M	088585	A-39
N11R-M	086313	A-39
N11RL-M	086299	A-39
N1AD502-M	079265	A-35
N1AD502SVM5-M	087487	A-36
N1AD502SVM5-MC1883	091471	A-36
N1AD508-M	083886	A-34
N1AD508-MC2222	103237	A-34
N1AD508AM-M	090546	A-37
N1AD514-M	083849	A-34
N1AD514AM-MC2222	110462	A-35
N1AD514SVM5-M	087603	A-35
N1AK502-M	083847	A-35
N1AK502SVM5-M	087489	A-36
N1AK502SVM5-MC1883	087496	A-36
N1AR502-M	078485	A-35
N1AR502AM-M	090541	A-37
N1AR502SVM5-M	087488	A-36
N1AR508-M	083887	A-34
N1AR508-MC2222	103221	A-34
N1AR514-M	078487	A-34
N1AR514AM-MC2222	103247	A-35
N1AR514SVM5-M	087604	A-35
N1ARL502-M	083848	A-37
N1ARL508-M	087147	A-37

Item	Order no.	Page
N1ARL514-M	087204	A-37
N1AW508-M	087205	A-34
N1AW508-MC2222	103222	A-34
N1AW514-M	083850	A-34
N1AW514SVM5-M	090743	A-35
NB01D556-M	085245	A-31
NB01D588-M	088584	A-31
NB01K556-M	085247	A-31
NB01R556-M	085246	A-31
NB01R588-M	088583	A-31
NB01R620-MC2276	102883	A-31
SN01D553-M	085252	A-32
SN01D558-M	085260	A-32
SN01D558SVM5-M	088625	A-32
SN01K553-M	085254	A-32
SN01K558-M	085262	A-32
SN01K558SVM5-M	088627	A-32
SN01R553-M	085253	A-32
SN01R558-M	085261	A-32
SN01R558SVM5-M	088626	A-32
SN01R558X2000-M	090515	A-33

Index by order number

Order no.	Item	Page
001366	EGT1/4A2000	A-14
001368	EGT1/4A5000	A-14
001371	EGT1/4R2000	A-14
001372	EGT1/4R5000	A-14
001732	EGT1-2000	A-20
001733	EGT1-5000	A-20
001864	EGT2-2000	A-22
001865	EGT2-5000	A-22
019727	EGT1SEM4	A-20
033976	EGT1/4ASEM4	A-14
033982	EGT1/4RSEM4	A-14
035495	LE 060 rt	A-47
035496	LE 060 gr	A-47
035497	LE 060 ge	A-47
035613	C-M12F04-04X034PU05,0-GA-035613	A-44
035618	C-M12F04-04X034PU05,0-GA-035618	A-45
041091	C-M12F04-04X034PU05,0-GA-041091	A-46
045523	C-M12F05-05XDIFPV05,0-GA-045523	A-45
045524	C-M12F05-05XDIFPV0,50-GA-045524	A-44
052504	EGT2SEM4	A-22
054250	EGT1SEM4C1613	A-21
073461	C-M12F05-05X050PU05,0-GA-073461	A-44
073462	C-M12F05-05X050PU05,0-GA-073462	A-45
075426	EGT12ASFM5	A-11
075427	EGT12RSFM5	A-11
075556	EGM12-1200C1791	A-16
075644	EGT1/4ASEM4C1802	A-14
076154	EGM12-4000C1791	A-16
076464	EGM12-1200C1820	A-16
077228	EGM12SAM3C1868	A-17
077347	EGT1SEM4C1832	A-21
077683	EKVM20/06	A-47
078483	EGT12ARSEM4C1888	A-13
078485	N1AR502-M	A-35
078487	N1AR514-M	A-34
078848	EGT12R5000	A-10
079139	EGT12RRSEM4C1888	A-13
079265	N1AD502-M	A-35
082201	EGT12A5000	A-10
082205	EGM12SEM4	A-17
083847	N1AK502-M	A-35
083848	N1ARL502-M	A-37
083849	N1AD514-M	A-34
083850	N1AW514-M	A-34
083886	N1AD508-M	A-34
083887	N1AR508-M	A-34
084000	EGT11R2N50SAM4	A-12
084902	N01D550-M	A-26
084903	N01R550-M	A-26
084904	N01K550-M	A-26
085243	N01R562-M	A-26
085245	NB01D556-M	A-31
085246	NB01R556-M	A-31
085247	NB01K556-M	A-31
085252	SN01D553-M	A-32
085253	SN01R553-M	A-32
085254	SN01K553-M	A-32
085260	SN01D558-M	A-32
085261	SN01R558-M	A-32
085262	SN01K558-M	A-32
085708	N01D550-MC2018	A-27
086293	N10D-M	A-38
086294	N10R-M	A-38

Order no.	Item	Page
086298	N11D-M	A-39
086299	N11RL-M	A-39
086313	N11R-M	A-39
086327	EKVM12/04	A-47
086328	EKVM16/04	A-47
086330	EKVM16/06	A-47
087147	N1ARL508-M	A-37
087151	N01D562-M	A-26
087152	N01K562-M	A-26
087162	N01D572-M	A-26
087163	N01R572-M	A-26
087164	N01K572-M	A-26
087204	N1ARL514-M	A-37
087205	N1AW508-M	A-34
087487	N1AD502SVM5-M	A-36
087488	N1AR502SVM5-M	A-36
087489	N1AK502SVM5-M	A-36
087496	N1AK502SVM5-MC1883	A-36
087603	N1AD514SVM5-M	A-35
087604	N1AR514SVM5-M	A-35
088583	NB01R588-M	A-31
088584	NB01D588-M	A-31
088585	N11K-M	A-39
088587	N1ORL-M	A-38
088589	N10K-M	A-38
088622	N01R550SVM5-M	A-27
088623	N01D550SVM5-M	A-27
088624	N01K550SVM5-M	A-27
088625	SN01D558SVM5-M	A-32
088626	SN01R558SVM5-M	A-32
088627	SN01K558SVM5-M	A-32
088978	N01D550X5000-M	A-27
088982	N01R550X5000-M	A-27
088986	N01K550X5000-M	A-27
089619	N01K550-MC2018	A-27
090515	SN01R558X2000-M	A-33
090541	N1AR502AM-M	A-37
090546	N1AD508AM-M	A-37
090743	N1AW514SVM5-M	A-35
091001	N01R550-MC1526	A-30
091002	N01K550-MC1526	A-30
091003	N01D550-MC1526	A-30
091257	N01R550SEM5-M	A-30
091258	N01K550SEM5-M	A-30
091471	N1AD502SVM5-MC1883	A-36
091848	EGT11R2NSFM5	A-12
092026	EGT4-5000	A-23
092695	EGT1M12-2000	A-18
093352	EGT11A2NSFM5	A-12
093364	EGT1M12-5000	A-18
093365	EGT1M12SEM4	A-18
093426	N01R562SVM5-M	A-27
093733	EGM12SEM4C1820	A-17
093967	EGT4-10000	A-23
094339	EGT4-2000	A-23
094823	EGZ12-12-5000	A-24
094856	N01R550-MC2018	A-27
094982	EGT1/4A2000C2079	A-15
095112	EGT12ASFM5C2083	A-11
095278	EGT1/4ASEM4C2088	A-15
098071	EGT1/4ASEM4C2137	A-15
102476	EGT1/4A2000C2137	A-15
102479	EGT1SEM4C2221	A-21

Order no.	Item	Page
102883	NBO1R620-MC2276	A-31
103221	N1AR508-MC2222	A-34
103222	N1AW508-MC2222	A-34
103237	N1AD508-MC2222	A-34
103247	N1AR514AM-MC2222	A-35
104223	EGT12A3000C2250	A-10
104316	EGT1/4RSEM4C2088	A-15
104372	EGT1/4RSEM4C2137	A-15
110462	N1AD514AM-MC2222	A-35
119345	EGM8-1000C2396	A-16
126384	EGM12-2500C2452	A-17
128070	N01R593-MC2445	A-28
128196	EGM12-1200C2463	A-17
136960	C-M12F05-05X034PU05,0-GA-136960	A-45
136961	C-M12F05-05X034PU10,O-GA-136961	A-45
136962	C-M12F05-05X034PU05,0-GA-136962	A-46
136963	C-M12F05-05X034PU10,O-GA-136963	A-46
ENA 086099	ENA10B050UP048NKK10-M	A-42
ENA 086280	ENA10B050UP048LKK10-M	A-42
ESN 088770	ESN10B050UP048LKSSO1-M	A-43
ESN 088771	ESN10B050UP048LK05P-M	A-43

Position Switches according to EN 50041

EUCHNER

More than safety.

Position Switches According to EN 50041

General information B-4
Advantages and features B-5
Application examples B-6
The position switch in detail B-7
Adjustment options B-8
Switching elements B-9
Wiring diagrams B-10
Plunger types B-11
Position switch with lever arm B-12
Series NG.../NZ... with cable entry M20 x 1.5
with plug connectors SR6 and SR11
with M12 plug connector SVM5
Position switch with adjustable lever arm B-18
Series NG.../NZ... with cable entry M20 x 1.5with M12 plug connector SVM5
Position switch with pivoted lever arm B-22
Series NG... with cable entry M20 x 1.5with M12 plug connector SVM5
Position switch with plunger actuator B-26
Series NG.../NZ... with cable entry M20 x 1.5
with plug connectors SR6 and SR11with M12 plug connector SVM5
Position switch with spring actuator B-38
Series NG... with cable entry M20 x 1.5with M12 plug connector SVM5
Special versions B-42
Spare parts and accessories B-45

General information

EUCHNER position switches - precise, reliable and versatile

EUCHNER position switches are manufactured in accordance with European standard EN 50041 . Robust construction and the use of high quality corrosion resistant materials, precision finishing and degree of protection IP 67 according to IEC 60529 guarantee trouble-free and reliable operation under the toughest conditions.

Various EUCHNER position switch variants are also equipped as safety switches with switching elements whose NC contacts are positively opened by a rigid plunger, even if the switching element is damaged due to a broken spring or contact weld. Positively driven position switches are used in cases where a guarantee of machine and/or human safety is absolutely essential, e.g. final position limitation or an EMERGENCY STOP.

Approvals for series NG... and NZ...

EUCHNER position switches offer important advantages and special features

- Housing and cover made of robust die-cast aluminum to take ten different actuators
\Rightarrow Actuating heads can be adjusted $4 \times 90^{\circ}$, lever arms can be adjusted and fixed either continuously or $4 \times 90^{\circ}$
- Double or quadruple switching elements (e.g. two positively driven contacts + two NO contacts), silver alloy contacts, gold flashed
- Cable entry M20 x 1.5 or plug connection
- Mechanical life up to 30 million operating cycles
- Degree of protection IP 67 according to IEC 60529
- High operating point accuracy to $\pm 0.002 \mathrm{~mm}$
- Use of silicone-free lubricants
- Cover made of die-cast aluminum with inserted edge seal
- Diaphragm seal and cover seal made of NBR plastic (acrylonitrile-butadiene rubber): protection of the switching space against coolants and lubricants
- Great versatility thanks to LED function display, plug connector and multiple adjustment options

Application examples for position switches from series NG... and NZ...

Position switch in detail

Plunger actuation

The plunger actuated versions allow the user a choice of six different designs.
The hardened stainless steel plungers with telescopic action (positively driven position switches have rigid plungers) are precisely guided within the anodized actuator head, and are almost maintenance free.
The approach direction of the actuator head can easily be changed by 90°.

The diaphragm seal

In switches with plunger actuation, the plunger compartment and the interior of the switch are separated by a diaphragm seal made of NBR (acrylonitrile-butadiene rubber). Because of their outstanding technical properties, NBR materials are used wherever possible for all mechanical and systems engineering applications.
The seal is permanently connected to the plunger, and the plunger - not the switching element - returns it to the free position by means of the plunger return spring after every switching operation. Any build-up of pressure during plunger actuation is reliably prevented by a relief valve.
The switching element is actuated by means of a metal cap pressed onto the seal.
Switching point displacement (a logical consequence due to the high elasticity of the seal) is therefore completely eliminated.

Lever arm actuation

Different types of actuators may be used for lever arm actuation. The stainless steel shaft is guided precisely through the housing.
With the numerous adjusting options, a high degree of flexibility is given:

- Approach direction adjustable by $8 \times 90^{\circ}$
- Actuator direction for lever arm actuation adjustable by $4 \times 90^{\circ}$
- Switches to the left or to the right, or on both sides

The edge seal

In lever arm actuated switches, an edge seal protects the actuating mechanism and the switch chamber against dirt and dust. The edge seal, which is made of NBR, is resistant to all known coolants and lubricants.

The housing

With their robust design, the die-cast alloy housings have proven themselves highly resistant to corrosion even under the toughest conditions.
The control cable can be connected with a cable gland M20 $\times 1.5$ or via pre-wired plug connectors with straight or angled outlet. The right-angle plug connectors can be adjusted in seven directions around the longitudinal axis of the switch.

Cable connections

EUCHNER position switches according to EN 50041 undergo routine check tests for compliance with degree of protection IP 67 before delivery to the customer. To achieve this degree of protection, only high-quality metal cable glands with a captive sealing ring or the pre-wired straight or angled plug connectors must be used.

Function display

The position switches can be fitted with a function display (LED) on request. Voltage ranges of 10 to $60 \mathrm{~V} \mathrm{AC/DC}$,110 V AC and 230 V AC are available.

Adjustment options

Actuator and approach directions

Adjustment option for the actuator
Horizontal adjustment $4 \times 90^{\circ}$

Vertical adjustment $4 \times 90^{\circ}$ or $8 \times 45^{\circ}$

Adjustment option for switching direction

The large selection of actuator heads guarantees maximum flexibility and is suitable for a variety of applications.
For example, the aluminum lever arm is used for high approach speeds and generous actuating mechanism tolerances.
The chisel plunger with polish-ground surface is designed for a high operating point accuracy of $\pm 0.002 \mathrm{~mm}$.
The ball plungers can be actuated from a number of different directions.

After removal of the stainless steel fixing screws, the actuator heads can each be adjusted horizontally by 90°.

The lever arm can be adjusted continuously for position switches without a safety function and by 45° for position switches with a safety function.

On delivery, the lever arm actuation is set to left and right switching.
If necessary, it can be set to right switching or left switching only.

Switching elements

Switching element $510{ }^{21}$

(without positively driven contact) Snap-action switching contact with one NC contact and one NO contact. Double gap, electrically isolated switching bridge, silver alloy gold flashed contact material, screw terminal with self-lifting clamp washers. Used for NG...

Switching element $511{ }^{21}$

Snap-action switching contact with one positively driven contact and one NO contact.
Double gap, electrically isolated contacts, silver alloy gold flashed contact material, screw terminal with self-lifting clamp washers.
Used for NZ...

Switching element $528 \mathrm{H}^{1{ }^{13}}$)

Slow-action switching contact with one positively driven contact and one NO contact.
Double gap, electrically isolated H contact bridges for currents from 1 mA to 4 A , silver alloy gold flashed contact material, screw terminal with self-lifting clamp washers.
Used for NZ...
Switching element $538 \mathrm{H}^{113)}$
Slow-action switching contact with two positively driven contacts.
Double gap, electrically isolated H contact bridges for currents from 1 mA to 4 A , silver alloy gold flashed contact material, screw terminal with self-lifting clamp washers. Used for NZ...

Switching element $2131 \mathrm{H}^{3}$
Slow-action switching contact with three positively driven contacts and one NO contact.
Double gap, electrically isolated H contact bridges for currents from 1 mA to 4 A , silver alloy gold flashed contact material, screw terminal with self-lifting clamp washers. Used for NZ...

Switching element $3131 \mathrm{H}^{3)}$

Slow-action switching contact with two positively driven contacts and two NO contacts.
Double gap, electrically isolated H contact bridges for currents from 1 mA to 4 A , silver alloy gold flashed contact material, screw terminal with self-lifting clamp washers. Used for NZ...

Switching element $2121 \mathrm{H}^{3)}$

Slow-action switching contact with four positively driven contacts. Double gap, electrically isolated H contact bridges for currents from 1 mA to 4 A , silver alloy gold flashed contact material, screw terminal with self-lifting clamp washers. Used for NZ...

Wiring diagrams

Plug connector SR6

Pin assignment for male socket (top view of
switch mounted connector)

Plug connector SR11
Pin assignment for male socket
(top view of switch mounted connector)

Plug connector SVM5
(M12, 5-pin)
 switch mounted connector)

Terminal assignment for switching elements

$510 / 511 / 528 \mathrm{H}$
538H

with LED indicator

Current rating curve

for connection cross section $1.5 \mathrm{~mm}^{2}$

Current rating curve

for connection cross section $0.5 \mathrm{~mm}^{2}$

Terminal assignment for switching elements

$$
510 / 511 / 528 H
$$

538H

with LED indicator

Plunger types

Plungers for position switches are made of stainless steel and are extremely accurate.
In conjunction with a plunger guide with a special surface finish, operation is extremely reliable and maintenance-free even beyond the guaranteed mechanical life.

There are two different types of actuating systems, depending on the application. For standard applications, the plunger is fitted with a telescopic device. With this system, the plunger can be depressed to the reference surface without damaging the switching element.

Instead of this telescopic plunger, position switches with safety function (with safety switching element) have a rigid plunger to ensure positive driving according to IEC 60947-5-1. This means that the contact point will be reliably opened in the event of mechanical failure of the switching element - e.g. owing to the failure of a contact spring or contact weld resulting from an overload.

Plunger travel

The pictures show the various positions of the plunger actuated by a trip dog.
The precise values for the relevant design are shown in the technical data.

Travel ratio for plunger/trip dog

All the plunger travel data shown in the technical data refers to axial actuation. The travel for radial actuation with angled trip dogs is increase, and this must be calculated.

Plunger types

Depending on the technical requirements, four different plunger types (chisel, roller, ball and domed plungers) are used.

[^3]
Position switch series NG1.../NZ1...

Roller lever arm HB (plastic roller)
HS (steel roller)
Cable entry M20 x 1.5

Dimension drawing

Travel diagrams

ES538H

SK2131H

NG...
(cc) EA[- ULTLUs

NZ...

(CC) EFL

1) Not applicable to $N Z$ with switching element 511.

Switching elements

510 Snap-action switching contact 1 NC + 1 NO
511 Snap-action switching contact 1 NC $\Theta+1$ NO
228H Slow-action switching contact 1 NC $\Theta+1$ NO
538H Slow-action switching contact 2 NC Θ
2131H Slow-action switching contact 3 NC $\Theta+1$ NO
3131H Slow-action switching contact 2 NC $\Theta+2$ NO
(further information: see page B-9)

LED function display

A red function display LED is available for the following voltage ranges:

Adjustment options (see page B-8)

$\begin{array}{ll}\text { - Horizontal } & 4 \times 90^{\circ} \\ \text { - Vertical } & 8 \times 45^{\circ}\end{array}$

Switching direction

Switches to the right, left or both sides (see page B-8).
. If damaged or worn, safety switches must be replaced as a unit.
. Notes on installation for position switches with safety switching elements
To achieve the positively driven travel, the dimension 52^{+1} must be maintained by the trip dog. Actuating elements such as cam approach guides must be positively mounted in accordance with EN 1088, i.e. riveted, welded or otherwise secured against becoming loose.

Parameter	Value				Unit
Housing material	Anodized die-cast alloy				
Degree of protection acc. to IEC 60529	IP 67				
Installation position	Any				
Mechanical life	30×10^{6} operating cycles				
Ambient temperature	$-25 \ldots+80$ (-40 ${ }^{\circ} \mathrm{C}$ on request)				${ }^{\circ} \mathrm{C}$
Weight	Approx. 0.3				kg
Actuator	Roller lever arm				
Roller material	Plastic (HB)		Steel (HS)		
Approach speed, max. ${ }^{1)}$	300		60		$\mathrm{m} / \mathrm{min}$
Approach speed, min.	0.1				$\mathrm{m} / \mathrm{min}$
Operating point accuracy	± 0.25				
Positively driven acc. to IEC 60947-5-1, appendix K	See symbol Θ in travel diagram				
Actuating force, min.	15				N
Switching elements		$\begin{gathered} \mathbf{5 2 8 H} \\ 1 \mathrm{NC} \Theta+1 \mathrm{NO} \end{gathered}$	538H		
	$1 \mathrm{NC}+1 \mathrm{NO}$		$2 \mathrm{NC} \Theta$		
	511	2131H	$\begin{gathered} 3131 \mathrm{H} \\ 2 \mathrm{NC} \Theta+2 \mathrm{NO} \end{gathered}$		
	$1 \Theta+1$ NO	$3 \mathrm{NC} \Theta+1 \mathrm{NO}$			
Switching principle	Snap-action switching contact	Slow-action switching contact with H-contact bridge			
Contact material	Silver alloy, gold flashed				
Contact closing time	< 4				ms
Contact bounce time	< 3				ms
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	2.5				kV
Rated insulation voltage U_{i}	250				V
Utilization category acc. to IEC 60947-5-1					
AC12	$\mathrm{I}_{\mathrm{e}} 10 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}$				
AC15	$\mathrm{I}_{\mathrm{e}} 6 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}$	$\mathrm{I}_{\mathrm{e}} 4 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}$			
DC13	$\mathrm{l}_{\mathrm{e}} 6 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}$	$\mathrm{I}_{\mathrm{e}} 4 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}$			
Switching current, min., at switching voltage	$\begin{aligned} & 10 \\ & 24 \end{aligned}$	1 10 24 12	$\begin{gathered} 1 \\ 24 \end{gathered}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} D \mathrm{C} \end{gathered}$
Conventional thermal current $t_{\text {th }}$	6	4			A
Short circuit prot. acc. to IEC 60269-1 (control circuit fuse)	10/6	4			A gG
Connection	Screw terminal ${ }^{2)}$				
Conductor cross-section, max.	2×1.5				mm^{2}

1) The specified approach speed applies to an approach angle of 30°.
2) Wiring diagram: see page B-9.

Ordering table

Series	Roller	Switching element	Order no.		
			Function display		
			without	L060	L110
NG1...-M	HB Plastic roller	510	079926	090360	On request
NZ1...-M		511	079952	090039	
		528	088199	090965	
		538	090966	090967	
		2131	090968	-	-
		3131	090969	-	-
NG1...-M	HS Steel roller	510	079927	079937	On request
NZ1...-M		511	079953	090035	
		528	090970	090971	
		538	090972	090760	
		2131	090973	-	-
		3131	090747	-	-

Ordering example: Position switch without safety function NG, cable entry 1,
lever arm with steel roller HS, snap-action switching element 510,
function display L060 10-60 V, metric thread M20 x 1.5 M
NG1HS-510L060-M

Position switch series NG2.../NZ2...

> Roller lever arm HB (plastic roller)
HS (steel roller)
$>$ Plug connectors SR6 and SR11

Dimension drawing

NG...
©(c) efl © ©
NZ...
 (c) EH[© (ఝn)

1) Not applicable to $N Z$ with switching element 511.

Switching elements

510 Snap-action switching contact 1 NC + 1 NO
511 Snap-action switching contact 1 NC $\Theta+1$ N 0
-528H Slow-action switching contact 1 NC $\Theta+1$ N 0
538H Slow-action switching contact 2 NC Θ
2131H Slow-action switching contact 3 NC $\Theta+1$ NO
3131H Slow-action switching contact $2 \mathrm{NC} \Theta+2$ NO
(further information: see page B-9)

LED function display

A red function display LED is available for the following voltage ranges:

	$12-60 \mathrm{~V}$	AC/DC	(standard)	L060
	110 V	AC $\pm 15 \%$	(on request)	L110
	230 V	AC $\pm 15 \%$	(on request)	L220

Adjustment options (see page B-8)

$\begin{array}{ll}- \text { Horizontal } & 4 \times 90^{\circ} \\ - & \text { Vertical } \\ 8 \times 45^{\circ}\end{array}$

Switching direction

Switches to the right, left or both sides (see page B-8).
replaced as a unit.

. Notes on installation for position switches with safety switching elements

To achieve the positively driven travel, the dimension 52^{+1} must be maintained by the trip dog. Actuating elements such as cam approach guides must be positively mounted in accordance with EN 1088, i.e. riveted, welded or otherwise secured against becoming loose.

Technical data

1) The specified approach speed applies to an approach angle of 30°.
2) Wiring diagram: see page $B-10$.

Ordering table

Position switch series NG2.../NZ2...

Roller lever arm HB (plastic roller)
HS (steel roller)

- Plug connector M12/SVM5

Dimension drawing

Travel diagrams

ES538H

NG...
(cc) ET[(\#a) CUL Us
NZ...

(1)

1) Not applicable to $N Z$ with switching element 511 .

Switching elements

> 510 Snap-action switching contact 1 NC + 1 NO

- 511 Snap-action switching contact $1 \mathrm{NC} \Theta+1$ NO
228H Slow-action switching contact 1 NC $\Theta+1$ NO
538H Slow-action switching contact 2 NC Θ
(further information: see page B-9)

LED function display
Available on request
Adjustment options (see page B-8)

- Horizontal $4 \times 90^{\circ}$
- Vertical $8 \times 45^{\circ}$

Switching direction
Switches to the right, left or both sides (see page B-8).
. If damaged or worn, safety switches must be replaced as a unit.

A Notes on installation for position switches with safety switching elements
To achieve the positively driven travel, the dimension 52^{+1} must be maintained by the trip dog. Actuating elements such as cam approach guides must be positively mounted in accordance with EN 1088, i.e. riveted, welded or otherwise secured against becoming loose.

1) The specified approach speed applies to an approach angle of 30°.
2) Wiring diagram: see page $B-10$.

Ordering table

Series	Roller	Switching element	Order no.
			Plug connector
			SVM5
NG2...	HB Plastic roller	510	088631
NZ2...		511	090861
		528	090864
		538	090862
NG2...	HS Steel roller	510	090866
NZ2...		511	090867
		528	090868
		538	090869

Ordering example: Position switch without safety function NG, plug connector 2,
lever arm with steel roller HS, snap-action switching element 510,
M12 male socket with PE connection SVM5
NG2HS-510SVM5

Position switch series NG1.../NZ1...

- Adjustable roller lever arm

VB (plastic) / PB (plastic roller)
VS (steel roller)/ PS (steel roller)

- Cable entry M20 x $\mathbf{1 . 5}$ (plug connector on request)

Dimension drawing

VB / VS

PB / PS

NG...
NZ...

NG...
(cc) Ef[C(14) us
NZ...

(ccc)
$E!$

1) Not applicable to $N Z$ with switching element 511 .

Switching elements

510 Snap-action switching contact 1 NC + 1 NO

- 511 Snap-action switching contact 1 NC $\Theta+1$ NO
- 528 H Slow-action switching contact 1 NC $\Theta+1$ NO
-538H Slow-action switching contact 2 NC Θ
2131H Slow-action switching contact 3 NC $\Theta+1$ NO
-3131H Slow-action switching contact $2 \mathrm{NC} \Theta+2$ NO
(further information: see page B-9)

LED function display

A red function display LED is available for the following voltage ranges:

$*$	$12-60 \mathrm{~V}$	AC/DC	(standard)
: 110 V	$\mathrm{AC} \pm 15 \%$	(on request)	L 110
$>$	230 V	AC $\pm 15 \%$	(on request)
L 220			

Adjustment options (see page B-8)

$\begin{array}{ll}\text { - Horizontal } & 4 \times 90^{\circ} \\ - \text { Vertical } & 8 \times 45^{\circ}\end{array}$

Switching direction

Switches to the right, left or both sides (see page B-8).

!. If damaged or worn, safety switches must be replaced as a unit.

Notes on installation for position switches with safety switching elements
To achieve the positively driven travel, the trip dog must be mounted so that it actuates the lever arm to the angle $45^{\circ+5^{\circ}}$. Actuating elements such as cam approach guides must be positively mounted in accordance with EN 1088, i.e. riveted, welded or otherwise secured against becoming loose.

1) The specified approach speed applies to an approach angle of 30°.
2) Wiring diagram: see page B-9.

Ordering table

Series	Roller	Switching element	Order no.	
			Function display	
			without	L060
NG1...-M	VB Plastic roller	510	086322	091288
	vS Steel roller	510	079934	090599
NZ1...-M	PB Plastic roller	511	088618	094753
		528	090870	On request
		538	090871	
		2131	090872	-
		3131	090873	-
	PS Steel roller	511	088613	-
		528	090874	090430
		538	090875	-
		2131	090876	-
		3131	090877	-
Ordering example:	Position switch with safety function $\mathbf{N Z}$, cable entry $\mathbf{1}$, adjustable lever arm with plastic roller PB, snap-action switching element $\mathbf{5 1 1}$, metric thread M20×1.5 M NZ1PB-511-M			Order

Position switch series NZ2...

Adjustable roller lever arm
PB (plastic roller)
PS (steel roller)
Plug connector M12/SVM5

Dimension drawing

Guide lug aligned

Travel diagrams

Contacts	A Operating point
open	B End position
closed	C Reset point

A If damaged or worn, safety switches must be replaced as a unit.

. Notes on installation for position switches

 with safety switching elementsTo achieve the positively driven travel, the trip dog must be mounted so that it actuates the lever arm to the angle $\left(45^{\circ+5}\right.$. Actuating elements such as cam approach guides must be positively mounted in accordance with EN 1088, i.e. riveted, welded or otherwise secured against becoming loose.

Parameter	Value	Unit
Housing material	Anodized die-cast alloy	
Degree of protection acc. to IEC 60529	IP 67	
Installation position	Any	
Mechanical life	30×10^{6} operating cycles	
Ambient temperature	$-25 \ldots+80$ (-40 ${ }^{\circ} \mathrm{C}$ on request)	${ }^{\circ} \mathrm{C}$
Weight	Approx. 0.3	kg
Actuator	Adjustable roller lever arm	
Roller material	Plastic (PB) Steel (PS)	
Approach speed, max. ${ }^{1)}$	120 30	$\mathrm{m} / \mathrm{min}$
Approach speed, min.	0.5	$\mathrm{m} / \mathrm{min}$
Positively driven acc. to IEC 60947-5-1, appendix K	See symbol Θ in travel diagram	
Actuating force, min.	15	N
Switching elements	511	
	$1 \Theta+1$ NO	
Switching principle	Snap-action switching contact	
Contact material	Silver alloy, gold flashed	
Contact closing time	< 4	ms
Contact bounce time	< 3	ms
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	1.5	kV
Rated insulation voltage U_{i}	50	V
Utilization category acc. to IEC 60947-5-1		
with plug connector SVM5 AC15	$1 \mathrm{e} 4 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 30 \mathrm{~V}$	
DC13	$\mathrm{I}_{\mathrm{e}} 4 \mathrm{~A} \mathrm{U}$ U 24 V	
Switching current, min., at switching voltage	$\begin{aligned} & 10 \\ & 24 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \text { DC } \end{gathered}$
Conventional thermal current $\mathrm{t}_{\text {th }}$	4	A
Short circuit prot. acc. to IEC 60269-1 (control circuit fuse)	4	A gG
Connection	Plug connector M12 ${ }^{21}$	

1) The specified approach speed applies to an approach angle of 30°.
2) Wiring diagram: see page $B-10$.

Ordering table

Series	Roller	Switching element	Order no.	
			Function display	
			without	L060
NZ2...	PB Plastic roller	511	-	098646
	PS Steel roller	511	106697	098645

Ordering example: Position switch with safety function NZ, plug connector 2,
adjustable lever arm with steel roller PS,
snap-action switching element 511, M12 male socket with PE connection SVM5
NZ2PS-511SVM5

Position switch series NG1...

- Pivoted lever arm SB (plastic rod)

Cab 1.5 SM (aluminum rod)
Cable entry M20 x $\mathbf{1 . 5}$ (plug connector on request)

Dimension drawing

Switching elements

510 Snap-action switching contact 1 NC + 1 NO
(further information: see page B-9)

LED function display

A red function display LED is available for the following voltage ranges:

$\quad 12-60 \mathrm{~V}$	$\mathrm{AC} / \mathrm{DC}$	(standard)	L 060
\Rightarrow	110 V	$\mathrm{AC} \pm 15 \%$	(on request)
: 230 V	$\mathrm{AC} \pm 15 \%$	(on request)	L 220

Adjustment options

Horizontal and vertical $4 \times 90^{\circ}$ (see page B-8).

Switching direction

Switches to the right, left or both sides (see page B-8).

Travel diagrams

Parameter	Value	Unit
Housing material	Anodized die-cast alloy	
Degree of protection acc. to IEC 60529	IP 67	
Installation position	Any	
Mechanical life	30×10^{6} operating cycles	
Ambient temperature	$-25 \ldots+80$ (-40 ${ }^{\circ} \mathrm{C}$ on request)	${ }^{\circ} \mathrm{C}$
Weight	Approx. 0.3	kg
Actuator	Pivoted lever arm	
Roller material	Plastic (SB) Aluminum (SM)	
Approach speed, max.	60	$\mathrm{m} / \mathrm{min}$
Approach speed, min.	0.5	$\mathrm{m} / \mathrm{min}$
Operating point accuracy	± 1	-
Actuating force, min.	15	N
Switching elements	510	
	1 NC + 1 NO	
Switching principle	Snap-action switching contact	
Contact material	Silver alloy, gold flashed	
Contact closing time	< 4	ms
Contact bounce time	< 3	ms
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	2.5	kV
Rated insulation voltage U_{i}	250	V
Utilization category acc. to IEC 60947-5-1		
AC12	$\mathrm{I}_{\mathrm{e}} 10 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}$	
AC15	$\mathrm{l}_{\mathrm{e}} 6 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}$	
DC13	$\mathrm{l}_{\mathrm{e}} 6 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}$	
Switching current, min., at switching voltage	$\begin{aligned} & 10 \\ & 24 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~V} D \mathrm{C} \end{aligned}$
Conventional thermal current Ith	6	A
Short circuit prot. acc. to IEC 60269-1 (control circuit fuse)	10/6	A gG
Connection	Screw terminal ${ }^{11}$	
Conductor cross-section, max.	2×1.5	mm^{2}

1) Wiring diagram: see page B-9.

Ordering table

Series	Actuator	Switching element	Order no.	
			Function display	
			without	L060
NG1...-M	SB Plastic rod	510	088609	090577
	SM Aluminum rod	510	079932	090575

Ordering example: Position switch without safety function NG, cable entry $\mathbf{1}$,
pivoted lever arm with plastic rod SB, snap-action switching element 510,
function display L060 10-60 V, metric thread M20 x 1.5 M
NG1SB-510L060-M

Position switch series NG2...

$\begin{array}{ll}>\text { Pivoted lever arm } & \text { SB (plastic rod) } \\ & \text { SM (aluminum rod) }\end{array}$

- Plug connector M12/SVM5

Dimension drawing

Right-angle plug connector:
male socket adjustable max. 270°.
Default setting: cable outlet to the right.

Contacts	A Operating point
\square open	B End position
closed	C Reset point

Switching elements
510 Snap-action switching contact 1 NC + 1 NO
(further information: see page B-9)

LED function display

Available on request

Adjustment options

Horizontal and vertical $4 \times 90^{\circ}$ (see page B-8).

Switching direction

Switches to the right, left or both sides (see page B-8).

Travel diagrams

Technical data		
Parameter	Value	Unit
Housing material	Anodized die-cast alloy	
Degree of protection acc. to IEC 60529	IP 67	
Installation position	Any	
Mechanical life	30×10^{6} operating cycles	
Ambient temperature	$-25 \ldots+80$ (-40 ${ }^{\circ} \mathrm{C}$ on request)	${ }^{\circ} \mathrm{C}$
Weight	Approx. 0.3	kg
Actuator	Pivoted lever arm	
Roller material	Plastic (SB) Aluminum (SM)	
Approach speed, max.	60	$\mathrm{m} / \mathrm{min}$
Approach speed, min.	0.5	$\mathrm{m} / \mathrm{min}$
Operating point accuracy	± 1	。
Actuating force, min.	15	N
Switching elements	$\begin{gathered} 510 \\ 1 \mathrm{NC}+1 \mathrm{NO} \end{gathered}$	
Switching principle	Snap-action switching contact	
Contact material	Silver alloy, gold flashed	
Contact closing time	< 4	ms
Contact bounce time	< 3	ms
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	1.5	kV
Rated insulation voltage U_{i}	50	V
Utilization category acc. to IEC 60947-5-1		
Plug connector SVM5 AC15	$\mathrm{I}_{\mathrm{e}} 4 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 30 \mathrm{~V}$	
DC13	$\mathrm{l}_{\mathrm{e}} 4 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}$	
Switching current, min., at switching voltage	$\begin{aligned} & 10 \\ & 24 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} D \mathrm{C} \end{gathered}$
Conventional thermal current $\mathrm{I}_{\text {th }}$	4	A
Short circuit prot. acc. to IEC 60269-1 (control circuit fuse)	4	A gG
Connection	Plug connector M12 ${ }^{1)}$	

1) Wiring diagram: see page $B-10$.

Ordering table

			Order no.	
Series	Actuator	Switching element	Plug connector SVM5	
NG2...	SB	Plastic rod	510	
	510	091303		
	Aluminum rod		094059	

Ordering example: Position switch without safety function NG, plug connector 2,
pivoted lever arm with plastic rod SB, snap-action switching element 510,
M12 male socket with PE connection SVM5
NG2SB-510SVM5

Position switch series NG1.../NZ1...

Plunger actuator

W0 (domed plunger) / KO (ball plunger)
DO (chisel plunger) / RK (roller plunger with small steel roller)
Cable entry M20 x 1.5

Dimension drawing

NG...
(cc) $)^{2)}$ EH[\rightleftharpoons @

NZ...

1) - Not applicable to NZ with switching element 511.

Not applicable to NZ versions DO and KO
2) - Not applicable to NG/NZ versions DO and KO with switching element $528 \mathrm{H}, 538 \mathrm{H}, 2131 \mathrm{H}, 3131 \mathrm{H}$.

Switching elements

510 Snap-action switching contact 1 NC + 1 NO
511 Snap-action switching contact 1 NC $\Theta+1$ NO
528H Slow-action switching contact 1 NC $\Theta+1$ NO
538H Slow-action switching contact 2 NC Θ
2131H Slow-action switching contact 3 NC $\Theta+1$ NO
3131H Slow-action switching contact $2 \mathrm{NC} \Theta+2$ NO
(further information: see page B-9)

LED function display

A red function display LED is available for the following voltage ranges:

Adjustment options

Horizontal $4 \times 90^{\circ}$ (see page B-8).

To achieve the positively driven travel, the dimension $31+1$ must be maintained by the trip dog. Actuating elements such as cam approach guides must be positively mounted in accordance with EN 1088, i.e. riveted, welded or otherwise secured against becoming loose.

Travel diagrams

Technical data

1) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639.
2) The reproducible operating point accuracy refers to the plunger's axial travel, after a run-in of approx. 2,000 operating cycles.
3) Wiring diagram: see page B-9.

Ordering table

Series	Actuator	Switching element	Order no.	
			Function display	
			without	L060
NG1...-M	WO Domed plunger	510	079945	On request
NZ1...-M		511	088611	089057
		528	089624	089078
		538	090878	089046
		2131	089629	-
		3131	089626	-
NG1...-M	DO Chisel plunger	510	088616	On request
NZ1...-M		511	088620	
		528	090901	
		538	090902	
		2131	090903	
		3131	090904	
NG1...-M	RK Roller plunger, small	510	088619	On request
NZ1...-M		511	088608	090354
		528	090905	090358
		538	090906	On request
		2131	090907	-
		3131	090908	-
NG1...-M	KO Ball plunger	510	088604	On request
Ordering example:	Position switch with safety function NZ, cable entry $\mathbf{1}$, domed plunger WO, snap-action switching element 511, function display L060 10-60 V, metric thread M20 x 1.5 M NZ1W0-511L060-M			Order

Position switch series NG2.../NZ2...

Plunger actuator

W0 (domed plunger) / KO (ball plunger)
DO (chisel plunger) / RK (roller plunger with small steel roller)
Plug connectors SR6 and SR11

Dimension drawing

NG...
(cc) $)^{2)}$ EH[\rightleftharpoons (凹us

NZ...

1) - Not applicable to NZ with switching element 511.

Not applicable to NZ versions DO and KO.
2) - Not applicable to NG/NZ versions DO and KO with switching element $528 \mathrm{H}, 538 \mathrm{H}, 2131 \mathrm{H}, 3131 \mathrm{H}$.

Switching elements

510 Snap-action switching contact 1 NC + 1 NO
511 Snap-action switching contact 1 NC $\Theta+1$ NO
528H Slow-action switching contact 1 NC $\Theta+1$ NO
538H Slow-action switching contact 2 NC Θ
2131H Slow-action switching contact 3 NC $\Theta+1$ NO
-3131H Slow-action switching contact $2 \mathrm{NC} \Theta+2$ NO
(further information: see page B-9)

LED function display

A red function display LED is available for the following voltage ranges:

Adjustment options

Horizontal $4 \times 90^{\circ}$ (see page B-8).

To achieve the positively driven travel, the dimension (31+1) must be maintained by the trip dog. Actuating elements such as cam approach guides must be positively mounted in accordance with EN 1088, i.e. riveted, welded or otherwise secured against becoming loose.

Travel diagrams

Technical data

1) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639.
2) The reproducible operating point accuracy refers to the plunger's axial travel, after a run-in of approx. 2,000 operating cycles.
3) Wiring diagram: see page B-10.

Ordering table

Series	Actuator	Switching element	Order no.	
			Function display	
			without	L060
NG2...	wo Domed plunger	510	090012	On request
NZ2...		511	090909	091280
		528	090910	091279
		538	090911	087558
		2131	090912	-
		3131	090913	-
NG2...	DO Chisel plunger	510	090011	On request
NZ2...		511	090015	
		528	090914	
		538	090915	
		2131	090916	-
		3131	090917	-
NG2...	RK Roller plunger, small	510	090918	091300
NZ2...		511	090016	099273
		528	090919	091292
		538	090920	On request
		2131	090921	-
		3131	090922	-
NG2...	KO Ball plunger	510	090020	On request

Position switch series NG2.../NZ2...

Plunger actuator

WO (domed plunger) / KO (ball plunger)
DO (chisel plunger) / RK (roller plunger with small steel roller)
Plug connector M12/SVM5

Dimension drawing

Guide lug aligned

Right-angle plug connector:
male socket adjustable max. 270°.
Default setting: cable outlet to the right.

NG...
(cc) $)^{2)}$ EH[

NZ...
 ${ }^{\text {CHSTED }}$
) - Not applicable to NZ with switching element 511 Not applicable to NZ versions DO and KO.
2) - Not applicable to NG/NZ versions DO and KO with switching element $528 \mathrm{H}, 538 \mathrm{H}, 2131 \mathrm{H}, 3131 \mathrm{H}$.

Switching elements

510 Snap-action switching contact 1 NC + 1 NO
511 Snap-action switching contact 1 NC $\Theta+1$ NO
528H Slow-action switching contact 1 NC $\Theta+1$ NO
538 H Slow-action switching contact 2 NC Θ
(further information: see page B-9)

LED function display

A red function display LED is available for the following voltage ranges:

$*$	$12-60 \mathrm{~V}$	$\mathrm{AC} / \mathrm{DC}$	(standard)
: 110 V	$\mathrm{AC} \pm 15 \%$	(on request)	L 110
$>$	230 V	AC $\pm 15 \%$	(on request)
L 220			

Adjustment options

Horizontal $4 \times 90^{\circ}$ (see page B-8).
\To achieve the positively driven travel, the dimension 31^{+1} must be maintained by the trip dog. Actuating elements such as cam approach guides must be positively mounted in accordance with EN 1088, i.e. riveted, welded or otherwise secured against becoming loose.

Travel diagrams

Contacts
\square open
open

1) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639.
2) The reproducible operating point accuracy refers to the plunger's axial travel, after a run-in of approx. 2,000 operating cycles.
3) Wiring diagram: see page $B-10$.

Ordering table

Series	Actuator	Switching element	Order no.
			Plug connector SVM5
NG2...	WO Domed plunger	510	090018
NZ2...		511	089014
		528	090923
		538	090924
NG2...	DO Chisel plunger	510	090014
NZ2...		511	090927
		528	090928
		538	090929
NG2...	RK Roller plunger, small	510	089020
NZ2...		511	089007
		528	090930
		538	089018
NG2...	KO Ball plunger	510	090931

Ordering example: Position switch without safety function NG, plug connector 2,
small roller plunger RK, snap-action switching element 510,
M12 male socket with PE connection SVM5
NG2RK-510SVM5
Order no. 089020

Position switch series NG1.../NZ1...

$\begin{array}{lll}>\text { Plunger actuator } & \text { RG } & \text { (roller plunger, plastic roller) } \\ & \text { RS } & \text { (roller plunger, steel roller) } \\ & \text { RL } & \text { (extended roller plunger) }\end{array}$
Cable entry M20 x 1.5

Dimension drawing

NG...
©(c) EFL
NZ...

$$
\text { © } \mathrm{EHD} \mathrm{E}
$$

1) Not applicable to NZ with switching element 511.

Switching elements

, 510 Snap-action switching contact 1 NC + 1 NO
511 Snap-action switching contact 1 NC $\Theta+1$ NO
-528H Slow-action switching contact 1 NC $\Theta+1$ NO
538H Slow-action switching contact 2 NC Θ
2131H Slow-action switching contact 3 NC $\Theta+1$ NO
3131H Slow-action switching contact 2 NC $\Theta+2$ NO
(further information: see page B-9)

LED function display

A red function display LED is available for the following voltage ranges:

$12-60 \mathrm{~V}$	$\mathrm{AC} / \mathrm{DC}$	(standard)
110 V	$\mathrm{AC} \pm 15 \%$	(on request)
230 V	$\mathrm{AC} \pm 15 \%$	(on request)

Adjustment options

Horizontal $4 \times 90^{\circ}$ (see page B-8).
If damaged or worn, safety switches must be replaced as a unit.

Notes on installation for position switches with safety switching elements
To achieve the positively driven travel, the dimension 44^{+1} must be maintained by the trip dog. Actuating elements such as cam approach guides must be positively mounted in accordance with EN 1088, i.e. riveted, welded or otherwise secured against becoming loose.

Travel diagrams

Technical data

Parameter	Value				Unit
Housing material	Anodized die-cast alloy				
Degree of protection acc. to IEC 60529	IP 67				
Installation position	Any				
Mechanical life	30×10^{6} operating cycles				
Ambient temperature	- $25 \ldots+80$ (-40 ${ }^{\circ} \mathrm{C}$ on request)				${ }^{\circ} \mathrm{C}$
Weight	Approx. 0.3				kg
Actuator	Roller plunger, plastic roller (RG)	Roller plunger, steel roller (RS)			
Approach speed, max. ${ }^{1)}$	20				$\mathrm{m} / \mathrm{min}$
Approach speed, min.	0.1				$\mathrm{m} / \mathrm{min}$
Operating point accuracy ${ }^{2 /}$	± 0.1				mm
Positively driven acc. to IEC 60947-5-1, appendix K	See symbol Θ in travel diagram				
Actuating force, min.	15				N
Switching elements	$\begin{gathered} 510 \\ 1 N C+1 N O \end{gathered}$				
	$\begin{gathered} 511 \\ 1 \Theta+1 \mathrm{NO} \end{gathered}$	$\begin{gathered} \mathbf{2 1 3 1 H} \\ 3 \mathrm{NC} \Theta+1 \mathrm{NO} \end{gathered}$			
Switching principle	Snap-action switching contact	Slow-action switching	with H	bridge	
Contact material	Silver alloy, gold flashed				
Contact closing time	< 4				ms
Contact bounce time	< 3				ms
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	2.5				kV
Rated insulation voltage U_{i}	250				V
Utilization category acc. to IEC 60947-5-1					
AC12	$\mathrm{I}_{\mathrm{e}} 10 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}$	-			
AC15	$\mathrm{I}_{\mathrm{e}} 6 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}$	$\mathrm{I}_{\mathrm{e}} 4 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}$			
DC13	$\mathrm{l}_{\mathrm{e}} 6 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}$	$\mathrm{l}_{\mathrm{e}} 4 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}$			
Switching current, min., at switching voltage	$\begin{aligned} & 10 \\ & 24 \end{aligned}$	1 10 24 12	$\begin{gathered} 1 \\ 24 \end{gathered}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} D \mathrm{C} \end{gathered}$
Conventional thermal current $\mathrm{I}_{\text {th }}$	6	4			A
Short circuit prot. acc. to IEC 60269-1 (control circuit fuse)	10/6	4			A gG
Connection	Screw terminal ${ }^{31}$				
Conductor cross-section, max.	2×1.5				mm^{2}

1) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639.
2) The reproducible operating point accuracy refers to the plunger's axial travel, after a run-in of approx. 2,000 operating cycles.
3) Wiring diagram: see page B-9.

Ordering table

Series	Actuator	Switching element	Order no.	
			Function display	
			without	L060
NG1...-M	RG Roller plunger Plastic roller	510	079941	090398
NZ1...-M		511	088605	089052
		528	090932	090008
		538	090933	090009
		2131	090934	-
		3131	090935	-
NG1...-M	RS Roller plunger Steel roller	510	079942	079943
NZ1...-M		511	079960	089053
		528	089627	086413
		538	090936	090555
		2131	089633	-
		3131	089631	-
NG1...-M	RL Extended roller plunger	510	086324	090602
NZ1...-M		511	088614	088996
		528	090937	090938
		538	090939	090940
		2131	090941	-
		3131	090942	-

[^4]
Position switch series NG2.../NZ2...

Plunger actuator RG (roller plunger, plastic roller)
RS (roller plunger, steel roller)
RL (extended roller plunger)
Plug connectors SR6 and SR11

Dimension drawing

NG...
©(c) EFL
NZ...

(c) EA[

1) Not applicable to $N Z$ with switching element 511 .

Switching elements

510 Snap-action switching contact 1 NC + 1 NO
511 Snap-action switching contact 1 NC $\Theta+1$ NO
-528H Slow-action switching contact 1 NC $\Theta+1$ N 0
538H Slow-action switching contact 2 NC Θ
2131H Slow-action switching contact 3 NC $\Theta+1$ NO
3131 H Slow-action switching contact 2 NC $\Theta+2$ NO
(further information: see page B-9)

LED function display

A red function display LED is available for the following voltage ranges:

- $12-60 \mathrm{~V}$	$\mathrm{AC} / \mathrm{DC}$	(standard)	L 060
\Rightarrow	110 V	$\mathrm{AC} \pm 15 \%$	(on request)
- 230 V	$\mathrm{AC} \pm 15 \%$	(on request)	L 220

Adjustment options

Horizontal $4 \times 90^{\circ}$ (see page B-8).

If damaged or worn, safety switches must be replaced as a unit.

Notes on installation for position switches with safety switching elements
To achieve the positively driven travel, the dimension 44^{+1} must be maintained by the trip dog. Actuating elements such as cam approach guides must be positively mounted in accordance with EN 1088, i.e. riveted, welded or otherwise secured against becoming loose.

Travel diagrams

Technical data

1) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639.
2) The reproducible operating point accuracy refers to the plunger's axial travel, after a run-in of approx. 2,000 operating cycles.
3) Wiring diagram: see page $B-10$.

Ordering table

Series	Actuator	Switching element	Order no.	
			Function display	
			without	L060
NG2...	RG Roller plunger Plastic roller	510	090021	090949
NZ2...		511	090032	091284
		528	090943	090944
		538	090945	090946
		2131	090947	-
		3131	090948	-
NG2...	RS Roller plunger Steel roller	510	090953	On request
NZ2...		511	090024	090147
		528	090950	088197
		538	090951	090952
		2131	090149	-
		3131	090954	-
NG2...	RL Extended roller plunger	510	090022	091285
NZ2...		511	090025	090955
		528	090956	091282
		538	090957	091278
		2131	090958	-
		3131	090959	-

Position switch series NG2.../NZ2...

> Plunger actuator RG (roller plunger, plastic roller)
RS (roller plunger, steel roller)
RL (extended roller plunger)
Plug connector M12/SVM5

Dimension drawing

Guide lug aligned

NG...
(CC) EFL (
NZ...
 (9n)

1) Not applicable to NZ with switching element 511.

Switching elements

510 Snap-action switching contact 1 NC + 1 NO
511 Snap-action switching contact 1 NC $\Theta+1$ NO

- $\mathbf{5 2 8 H}$ Slow-action switching contact 1 NC $\Theta+1$ NO
538H Slow-action switching contact 2 NC Θ
(further information: see page B-9)

LED function display

Available on request

Adjustment options

Horizontal $4 \times 90^{\circ}$ (see page B-8).
4. If damaged or worn, safety switches must be replaced as a unit.
A. Notes on installation for position switches with safety switching elements
To achieve the positively driven travel, the dimension 44^{+1} must be maintained by the trip dog. Actuating elements such as cam approach guides must be positively mounted in accordance with EN 1088, i.e. riveted, welded or otherwise secured against becoming loose.

Travel diagrams

Technical data						
Parameter	Value					Unit
Housing material	Anodized die-cast alloy					
Degree of protection acc. to IEC 60529	IP 67					
Installation position	Any					
Mechanical life	30×10^{6} operating cycles					
Ambient temperature	- $25 \ldots+80$ (-40 ${ }^{\circ} \mathrm{C}$ on request)					${ }^{\circ} \mathrm{C}$
Weight	Approx. 0.3					kg
Actuator	Roller plunger, plastic roller (RG)					
Approach speed, max. ${ }^{1)}$	20					$\mathrm{m} / \mathrm{min}$
Approach speed, min.	0.1					$\mathrm{m} / \mathrm{min}$
Operating point accuracy ${ }^{2)}$	± 0.1					mm
Positively driven acc. to IEC 60947-5-1, appendix K	See symbol Θ in travel diagram					
Actuating force, min.	15					N
Switching elements	$\begin{gathered} \mathbf{5 1 0} \\ 1 N C+1 N O \end{gathered}$	$\begin{gathered} \mathbf{5 2 8 H} \\ 1 \mathrm{NC} \Theta+1 \mathrm{NO} \end{gathered}$		$\begin{gathered} 538 \mathrm{H} \\ 2 \mathrm{NC} \Theta \end{gathered}$		
	$\begin{gathered} 511 \\ 1 \Theta+1 \mathrm{NO} \end{gathered}$					
Switching principle	Snap-action switching contact	Slow-action switching contact with H-contact bridge				
Contact material	Silver alloy, gold flashed					
Contact closing time	< 4					ms
Contact bounce time	< 3					ms
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	1.5					kV
Rated insulation voltage U_{i}	50					V
Utilization category acc. to IEC 60947-5-1						
Plug connector SVM5 AC15	$\mathrm{I}_{\mathrm{e}} 4 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 30 \mathrm{~V}$	$\mathrm{I}_{\mathrm{e}} 4 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 30 \mathrm{~V}$				
DC13	$\mathrm{I}_{\mathrm{e}} 4 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}$	$\mathrm{l}_{\mathrm{e}} 4 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}$				
Switching current, min., at switching voltage	$\begin{aligned} & 10 \\ & 24 \end{aligned}$	$\begin{gathered} 1 \\ 24 \end{gathered}$	10	$\begin{gathered} 1 \\ 24 \end{gathered}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} D \mathrm{C} \end{gathered}$
Conventional thermal current $\mathrm{l}_{\text {th }}$	4	4				A
Short circuit prot. acc. to IEC 60269-1 (control circuit fuse)	4	4				AgG
Connection	Plug connector M12 ${ }^{\text {3) }}$					

1) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639.
2) The reproducible operating point accuracy refers to the plunger's axial travel, after a run-in of approx. 2,000 operating cycles.
3) Wiring diagram: see page $B-10$.

Ordering table

Series	Actuator	Switching element	Order no.
			Plug connector SVM5
NG2...	RG Roller plunger Plastic roller	510	090960
NZ2...		511	090026
		528	090961
		538	090962
NG2...	RS Roller plunger Steel roller	510	088632
NZ2...		511	090027
		528	090963
		538	090964
NG2...	RL Extended roller plunger	510	On request
NZ2...		511	090028
		528	On request
		538	

Ordering example: Position switch with safety function NZ, plug connector 2,
roller plunger with plastic roller RG, snap-action switching element 511,
M12 male socket with PE connection SVM5
NZ2RG-511SVM5
Order no. 090026

Position switch series NG1...

$>$ Spring actuator FO

- Cable entry M20 x 1.5
- Actuating direction: all sides

Dimension drawing

Switching elements
510 Snap-action switching contact 1 NC + 1 NO
(further information: see page B-9)

LED function display

A red function display LED is available for the following voltage ranges:

1) Wiring diagram: see page B-9.

Ordering table

			Order no.	
Series	Actuator	Switching element	without	Function display
NG1...-M	FO	510	079911	090029

Ordering example: \quad Position switch without safety function NG, cable entry $\mathbf{1}$ spring steel wire spring actuator FO, snap-action switching element 510, function display L060 10-60 V, metric thread M20 x 1.5 M
NG1FO-510LO60-M

Position switch series NG2...

- Spring actuator FO
- Plug connector M12/SVM5
- Actuating direction: all sides

Dimension drawing

Guide lug

Switching elements
510 Snap-action switching contact 1 NC + 1 NO
(further information: see page B-9)
LED function display
Available on request

Technical data

Parameter	Value	Unit
Housing material	Anodized die-cast alloy	
Degree of protection acc. to IEC 60529	IP 67	
Installation position	Any	
Mechanical life	30×10^{6} operating cycles	
Ambient temperature	$-25 \ldots+80$ (-40 ${ }^{\circ} \mathrm{C}$ on request)	${ }^{\circ} \mathrm{C}$
Weight	Approx. 0.35	kg
Actuator	Spring actuator made of spring steel wire (FO)	
Approach speed, max.	20	$\mathrm{m} / \mathrm{min}$
Approach speed, min.	0.5	$\mathrm{m} / \mathrm{min}$
Actuating force, min.	5	N
Switching elements	$\begin{gathered} \mathbf{5 1 0} \\ 1 N C+1 N O \end{gathered}$	
Switching principle	Snap-action switching contact	
Contact material	Silver alloy, gold flashed	
Contact closing time	< 4	ms
Contact bounce time	< 3	ms
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	1.5	kV
Rated insulation voltage U_{i}	50	V
Utilization category acc. to IEC 60947-5-1		
Plug connector SVM5 AC15	$\mathrm{I}_{\mathrm{e}} 4 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 30 \mathrm{~V}$	
DC13	$\mathrm{I}_{\mathrm{e}} 4 \mathrm{~A} \quad \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}$	
Switching current, min., at switching voltage	$\begin{aligned} & 10 \\ & 24 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} D \mathrm{C} \end{gathered}$
Conventional thermal current $\mathrm{t}_{\text {th }}$	4	A
Short circuit prot. acc. to IEC 60269-1 (control circuit fuse)	4	A gG
Connection	Plug connector M12 ${ }^{1)}$	

1) Wiring diagram: see page $B-10$.

Ordering table

Series	Actuator	Switching element	Order no.
			Plug connector SVM5
NG2...	FO Spring actuator	510	092058

Ordering example:
Position switch without safety function NG, plug connector 2,
spring steel wire spring actuator FO, snap-action switching element 510,
M12 male socket with PE connection SVM5
NG2FO-510SVM5

Special versions (other special versions available on request)

Position switch with large plastic roller
Diameter 30 mm

Item	Order no.
NZ1HB-511-MC569	$\mathbf{0 7 9 9 6 5}$

Position switch with plug connector according to DIN 43651 WW/Audi, WW mat. no. 2348

Item	Order no.
NZ2HB-511L060C1630	054121

Position switch with steel roller on the inside of the lever

Item	Order no.
NZ1HS-3131-MC1779	079996

Switching element
SK3131 slow-action contact element
$2 \mathrm{NO}+2 \mathrm{NC} \Theta$
Positively driven contact

Position switch with sealed bearings
Diameter 19 mm

Item	Order no.
NZ1HS-511-MC1833	$\mathbf{0 9 1 3 1 2}$

Position switch with plug connector and elbow adapter according to DIN 43651
VW/Audi, VW mat. no. 2349

Item	Order no.
NZ2HB-511L060C1631	$\mathbf{0 5 4 1 2 2}$

Plug connector according to DIN 43651 Type SR6AM2

Position switch with M12 plug connector and pin assignment for LED indicator (pin 3 not used)

Item	Order no.
NG2HB-510SVM5C1883	$\mathbf{0 8 6 5 6 1}$

Position switch with two LED indicators

Diameter 18 mm

Item		Order no.
NZ1HB-528L024GEGR-M	Plastic roller	099929
NZ1HS-528L024GEGR-M	Steel roller	$\mathbf{0 9 9 9 3 0}$

Position switch with protective NBR bellows on the plunger guide Protection against serious contamination and aggressive coolants

Item	Order no.
NZ1RS-511-MC1588	091352

Position switch with gold plated contacts For switching low currents of at least 1 mA

Item	Order no.
NZ1RS-510AU-M	090416

Switching element
ES510 snap-action contact element 1 NO + 1 NC
Contact material: silver alloy $10 \mu \mathrm{~m}$ electro-gold-plated
annular cutting edge contact
Breaking capacity max. $30 \mathrm{~V} / 100 \mathrm{~mA}$
Min. breaking capacity $5 \mathrm{~V} / 1 \mathrm{~mA}$

Position switch with MENCOM plug connector MIN-9MR-1-18

Item	Order no.
NZ1RS-2131-9C-GMMF	$\mathbf{0 7 7 3 6 2}$

Position switch with small bearing

For high approach speeds and long travel distances

Item	Order no.
NZ1RK-528-MC1912	090572

28 slow-action contact element
$1 \mathrm{NO}+1 \mathrm{NC} \Theta$
Positively driven contact

Position switch with steel sleeve

For high approach speeds and protected guidance

Item	Order no.
NZ1RS-511-MC782	$\mathbf{0 9 3 1 4 1}$

Accessories

Lever arm actuation

Item	Order no.
NSA	012051

Adjustable roller arm

Item	Order no.
NVB (plastic roller)	012064
NVS (steel roller)	$\mathbf{0 1 2 0 6 5}$

Rod lever

Item	Order no.
NSB (plastic rod)	012052
NSM (aluminum rod)	012053

Roller arm

Item	Order no.
NHB (plastic roller)	$\mathbf{0 1 2 0 4 2}$
NHS (steel roller)	$\mathbf{0 1 2 0 4 3}$
NHSC1834 (ball bearing $\varnothing 19 \mathrm{~mm}$)	$\mathbf{0 7 7 3 4 9}$

Spring actuator

Item	Order no.
NFO (spring steel wire)	011909

Notice:

The actuator heads and actuators (except for roller lever NHB, NHS, NHSC...) are replacement parts for position switches without safety function. They do not fit position switches with safety function and must not be operated with these switches.

Actuator with small roller plunger

Item	Order no.
NRK (small steel roller)	$\mathbf{0 1 2 0 4 9}$

Actuator with roller plunger $\varnothing 12 \mathrm{~mm}$

Item	Order no.
NRG (plastic roller)	012046
NRS (steel roller)	$\mathbf{0 1 2 0 4 7}$

Actuator with ball plunger

Item	Order no.
NKO (steel ball)	012045

Actuator with domed plunger

Item	Order no.
NWO (polish-ground dome)	012066

Actuator with chisel plunger

Item	Order no.
NDO (polish-ground chisel plunger)	$\mathbf{0 1 1 9 0 8}$

Notice:

The actuator heads shown are spare parts for position switches without safety function.
They do not fit position switches with safety function and must not be operated with these switches.

Switching element ES 510 for series NG...

Item	Order no.
ES 510	$\mathbf{0 1 0 4 2 2}$

Cable gland M20 x 1.5

	Cable outer di- ameter [mm]		A	B	E
	Order no.				
EKVM20/06	$6.5-9.5$	20	6	24.5	$\mathbf{0 7 7 6 8 3}$
EKVM20/09	$9-13$	21	6	24.5	$\mathbf{0 7 7 6 8 4}$

Appliance socket, 7-pin

for series NG.../NZ... with plug connector SR6

Item	Order no.
Appliance socket, 7-pin, NG/NZ-SR6	093342

LED function display for series NG.../NZ...

Item	Voltage [V]	Current [mA]	Order no.
NGLE 060 rt	$12-60$ AC/DC	≤ 6.5	$\mathbf{0 2 9 2 2 0}$
NGLE 110 rt	$110 \pm 15 \%$ AC	≤ 3.5	$\mathbf{0 4 5 8 2 2}$
NGLE 220 rt	$230 \pm 15 \%$ AC	≤ 3.5	$\mathbf{0 4 5 8 2 5}$

Male socket/female plug, 12-pin

Item	Order no.
Male socket SD 12-M	$\mathbf{0 8 5 6 4 8}$
Female plug BS 12	$\mathbf{0 0 2 7 6 3}$

Technical data

Parameter	Value
Housing material	Metal
Number of pins	$11+\mathrm{PE}$
Rated voltage	$250 \mathrm{~V} \cong$
Level of contamination VDE 0110	2
Connection	Soldered connections
Max. conductor cross-section	$1 \mathrm{~mm}^{2}$
Contact material / surface	1μ hard gold-plated
Clamping range for cable	$12-14 \mathrm{~mm}$
Degree of protection acc. to IEC 60529	$\mathrm{IP} 67 /$ inserted
Ambient temperature range	$-20^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Appliance socket, 12-pin
for series NG.../NZ... with plug connector SR11

Item	Order no.
Appliance socket, 12-pin, NZ-SR11	093343

Plug connector SR6 (socket 6+PE) with/without connecting cable

Technical data

Parameter	Value
Housing material	Plastic
Number of pins	$6+\mathrm{PE}$
Rated voltage	$250 \mathrm{~V} \cong$
Degree of protection acc. to IEC 60529	PP 65/inserted
Connecting cable	PUR gray
Outer diameter	$\varnothing 8 \mathrm{~mm}$
Conductor cross-section	$1.0 \mathrm{~mm}^{2}$

Ordering table

Plug version	Connecting cable	Item	Order no.
	without	SR6EF	$\mathbf{0 1 3 1 7 6}$
Socket	5 m	SR6EF-5000	$\mathbf{0 7 7 6 3 2}$
Straight	10 m	SR6EF-10000	$\mathbf{0 7 7 6 3 3}$
	15 m	SR6EF-15000	$\mathbf{0 7 7 6 3 4}$
	without	SR6WF	$\mathbf{0 2 4 9 9 9}$
	Socket	5 m	SR6WF-5000
Angled	$\mathbf{0 7 m}$	SR6WF-10000	$\mathbf{0 7 7 6 3 8}$
	15 m	SR6WF-15000	$\mathbf{0 7 7 6 4 0}$

Plug connector SR11 (socket 11+PE) with/without connecting cable

Technical data

Parameter	Value
Housing material	Plastic
Number of pins	$11+\mathrm{PE}$
Rated voltage	$50 \mathrm{~V} \cong$
Degree of protection acc. to IEC 60529	IP 65/inserted
Connecting cable	PUR gray
Outer diameter	$\varnothing 10.5 \mathrm{~mm}$
Conductor cross-section	$1.0 \mathrm{~mm}^{2}$

Ordering table

Plug version	Connecting cable	Item	Order no.
Straight socket	without	SR11EF	$\mathbf{0 7 0 8 5 9}$
	5 m	SR11EF-5000	$\mathbf{0 7 7 6 2 9}$
	10 m	SR11EF-10000	$\mathbf{0 7 7 6 3 0}$
	15 m	SR11EF-15000	$\mathbf{0 7 7 6 3 1}$
	without	SR11WF	$\mathbf{0 5 4 7 7 3}$
	5 m	SR11WF-5000	$\mathbf{0 7 7 6 3 5}$
	10 m	SR11WF-10000	$\mathbf{0 7 7 6 3 6}$

Multiple Limit Switches, Trip Rails and Trip Dogs

EUCHNER

More than safety.

Multiple limit switches, trip rails and trip dogs

General C-4
Multiple limit switches C-8
Accessories C-23
Technical data C-26
Trip rails/trip dogs C-29
Appendix
Glossary C-33

General information on mechanical multiple limit switches

Use

EUCHNER precision multiple limit switches are used for controlling and positioning in all areas of mechanical and systems engineering and for solving automation tasks.

The main advantages of these highly accurate and reliable positioning devices are:

- Minimum space requirements due to compact design
- Low-cost connection through the use of a common control cable
- Easy access to all switch stations for test and service purposes
- Easy installation

A range of housing versions, including DIN versions, are available to suit the full spectrum of application fields. A high standard of quality is always guaranteed in every installation position by the degree of protection IP 67 .

Function

Precision multiple limit switches possess several switching elements arranged in a row. The spacing between the individual switching positions of 12 mm and 16 mm is standardized in accordance with DIN 43697. The range is completed with a particularly compact, space-saving version with a spacing of 8 mm .
The switching elements are actuated by means of plungers. This action is achieved with trip dogs in accordance with DIN 69 639, which are mounted with an interference fit in trip rails according to DIN 69638 (see page $\mathrm{C}-29$).

Layout

Depending on the technical requirements in terms of operating point accuracy and approach speed, four functionally different plunger types (chisel, roller, ball and domed plungers) are used.
Depending on the plunger type, the reproducible operating point accuracy is $\pm 0.002 \mathrm{~mm}$ and the maximum approach speed is $120 \mathrm{~m} / \mathrm{min}$.
The precision multiple limit switches can be assembled with snap and safety switching elements, or also in combination with inductive switching elements. The mechanical life of the switching elements amounts to 30 $\times 10^{6}$ mechanical operating cycles.
EUCHNER uses high-quality and proven acrylonitrile-butadiene rubber (NBR) for all seals and sealed areas. This material is resistant to oils, greases, fuels, hydraulic fluids and most known cooling lubricants. Moreover, NBR possesses high mechanical rigidity over a wide temperature range and so it is perfectly suitable for the highly stressed diaphragm seal, which separates the plunger compartment and the interior of the switch. The material used for the diaphragm seal is a key criterion for the quality, mechanical life and precision of the EUCHNER multiple limit switches. The same material is used for the cover seal and the cable entry.

Exterior diaphragm

A series with an exterior diaphragm that is designed to resist the effect of resinous cooling lubricants is also available.
The exterior diaphragm provides additional sealing of the plunger outside the housing.
The plunger guides in the housing are thus reliably protected from the penetration of the cooling lubricant. Plunger sticking is prevented, and the replacement of the switch or plunger is unnecessary. Technical data for this series: see page $\mathrm{C}-21$ and $\mathrm{C}-22$.

Plunger systems

General

Plungers for multiple limit switches are made of stainless steel and are extremely accurate.
In conjunction with a plunger guide with a special surface finish, operation is extremely reliable and maintenance-free even beyond the guaranteed mechanical life.

There are two different types of actuating systems, depending on the application. For standard applications, the plunger is fitted with a telescopic device.
With this system, the plunger can be depressed to the reference surface without damaging the switching element.
Multiple limit switches with safety switching elements possess a "rigid" plunger instead of this plunger with telescopic action, which ensures positive action in accordance with EN 60947. This means that the contact point will be reliably opened in the event of mechanical failure of the switching element - e.g. owing to the failure of a contact spring or contact weld resulting from an overload.

Plunger travel

The pictures show the various positions of a plunger actuated by a trip dog. The precise values for the relevant design are shown in the technical data.

Travel ratio for plunger/trip dog

All the plunger travel data shown in the technical data refers to axial actuation. When using our trip dogs in accordance with DIN 69639, this travel is doubled at the trip rail.

Plunger types

Depending on the technical requirements, four functionally different plunger types (chisel, roller, ball and domed plungers) are used for 8,12 or 16 mm plunger spacing, respectively.

Chisel plunger D

Hardened and polish-ground.
Operating point accuracy to $\pm 0.002 \mathrm{~mm}^{1)}$

Max. approach speed of $40 \mathrm{~m} / \mathrm{min}$.

Roller plunger R with plain bearing

(standard version for roller plunger)
Hardened roller.
Operating point accuracy to $\pm 0.01 \mathrm{~mm}^{1)}$
Max. approach speed of $80 \mathrm{~m} / \mathrm{min}$.
Roller plunger B with ball bearing

Hardened roller.
Operating point accuracy to $\pm 0.01 \mathrm{~mm}^{1)}$
Max. approach speed of $120 \mathrm{~m} / \mathrm{min}$.

Ball plunger K

(not in conjunction with
safety switching elements)
Hardened ball.
Can be actuated from various
directions.
Operating point accuracy to $\pm 0.01 \mathrm{~mm}^{1)}$
Max. approach speed of $10 \mathrm{~m} / \mathrm{min}$.

Dome plunger W

(instead of ball plungers in safety switching elements)
Hardened and polish-ground.
Can be actuated from various
directions.
Operating point accuracy to $\pm 0.002 \mathrm{~mm}^{1)}$
Max. approach speed of $10 \mathrm{~m} / \mathrm{min}$.

Switching elements

Snap-action switching element

Snap-action switching elements are predominantly used in mechanical multiple limit switches.
On snap-action switching elements, the change from the completely closed state to the completely open state is made at a defined point (operating point).
As a result the operating point is at a defined position, unlike on slow-action contact elements. Snap-action switching elements typically have a switching hysteresis.

Slow-action switching element

On slow-action switching elements the opening of the switching element is directly dependent on the position of the plunger. The further the plunger is moved, the further the switching element is opened. The plunger travel is therefore directly proportional to the travel covered by the switching contact in the switching element. From the travel diagrams it can be seen at which point the switching element changes from the closed state to the open state.

Positively driven contacts

Positively driven contacts are used in the switching elements. These are special switching contacts that are designed to ensure the switching contacts are always reliably separated. Even if contacts are welded together, the connection is opened by the actuating force.
It is a common feature of all safety switching elements that at least one switching contact is designed as a positively driven contact. In safety-relevant circuits, only switching elements with positively driven contacts are allowed.

General information on inductive multiple limit switches

Inductive multiple limit switches are used for positioning and control in all areas of mechanical and systems engineering. Inductive multiple limit switches are used for automation tasks in machines for the wood, textile and plastics industry, as well as for area monitoring for robotics.

Due to their non-contact and thus wear-free principle of operation, inductive multiple limit switches are insensitive to heavy vibration, heavy soiling and have an above average mechanical life even in aggressive ambient conditions.

Four different designs of inductive multiple limit switches are available for a very wide range of applications with $8 \mathrm{~mm}, 12 \mathrm{~mm}$ or 16 mm proximity switch spacing; these can be equipped with numerous inductive switching elements. In addition to these multiple limit switches, single limit switches according to DIN 43693 and the particularly compact ESN design are also available. With these versions a solution can be provided for almost every requirement.

Interchangeability with mechanical multiple limit switches and single limit switches means that it is possible to straightforwardly convert machines. The switches can therefore be retrofitted on existing machine installations to take full advantage of the benefits of non-contact switches.

For safety-relevant final position limitation, EMERGENCY STOP functions or other safety critical applications, it is possible to equip the multiple limit switches with a mixture of the necessary mechanical safety switching elements and inductive switching elements. You can combine the advantages of non-contact switching with positively driven contacts.

Switching functions

NO function

The NO function means that the load current flows when the active face of the inductive switching element is activated and that no current flows when the active face is not activated.

DC NO contact, PNP

NC function

The NC function means that the load current does not flow when the active face of the inductive switching element is activated and that current flows when the active face is not activated.

DC NC contact, PNP

NO + NC function

The NO + NC function incorporates both an NO function and an NC function. Associated circuit diagrams and wiring diagrams are given in the technical data.

Suppressor circuits

The inductive switching elements are largely protected against external interference by use of various circuit techniques (suppressor circuits). For utilization category DC-13 the output is to be protected with a free-wheeling diode for inductive loads.

Approvals

All multiple limit switches with plug connector or permanently connected cable are approved by Underwriters Laboratories (UL, Canada and USA).

Special versions

Mixed contact assembly

(Only in multiple limit switches with 12 and 16 mm plunger spacing) For specific functions on machines and systems, e.g. final position limitation, EMERGENCY STOP or similar, one or more stations on multiple limit switches can be equipped with safety switching elements.
Multiple limit switches with 12 mm plunger spacing can be assembled on request with a mixture of mechanical and inductive switching elements.

Plug connector

Many of our multiple limit switches are also available in a version with a plug connector. These versions all have UL approval.

Approach speed and usage with roller plungers

Using high-quality bearings and technology matched to the application, approach speeds up to $120 \mathrm{~m} / \mathrm{min}$ and very high usage can be realized at the same time.

High/low temperature

For use in extreme temperature conditions, multiple limit switches can be supplied in special versions on request.

General information on trip rails/trip dogs

EUCHNER trip rails and trip dogs are successfully used in conjunction with EUCHNER multiple limit switches in all areas of mechanical and systems engineering and for solving automation tasks. They are needed wherever travel-dependent positioning of various work steps is required.

The particular advantages of the EUCHNER combination include:

- Very high accuracy (to 0.002 mm).
- Long mechanical life (low mechanical wear and resistant to corrosion due to selected materials).
- Easy to use (user-friendly fastening and adjustment using refined precision mechanics).

EUCHNER trip rails and trip dogs are available in two variants. The function is exactly the same, in principle they differ only in the adjustment of the dog.

System U

U-trip rails enable the trip dogs to be adjusted from the switch side. The trip dogs can be installed and adjusted quickly and easily in any location. Materials are cast iron or aluminum.
U-trip dogs are designed for usage in U-trip rails. They have a split plate clamp mechanism and enable sensitive, accurate adjustment, even when the limit switch is activated.

Selection table for mechanical precision multiple limit switches

Series				Plunger spacing			Plunger types					Switching element					Options			Page
RGBF	SN	GSBF	GLBF	8	12	16	D	R	B	K	W	502	508	514	552	614	AM	St	LED	
-					\bullet		\bullet	\bullet	\bullet	\bigcirc	\bigcirc	-	-	-				\bigcirc	-	C-10
-					\bullet		-	\bullet				-		\bigcirc			-	\bigcirc	\bigcirc	C-21
-						\bullet	\bullet	\bullet	\bigcirc	\bigcirc	0	-	\bullet	\bullet				\bigcirc	-	C-10
	-			\bullet			\bullet	\bullet		\bullet					\bullet	-		\bigcirc		C-14
	\bullet				\bullet		\bullet	\bullet	\bullet	\bigcirc	0	\bullet	\bullet	-				\bigcirc	\bullet	C-12
	\bullet				\bullet		\bullet	\bullet				-					-	\bigcirc	\bigcirc	C-22
	\bullet					\bullet	\bullet	\bullet	\bigcirc	\bigcirc	\bigcirc	\bullet	-	-				\bigcirc	\bullet	C-12
		\bullet		\bullet			\bullet	\bullet		\bigcirc					\bullet	\bullet		\bigcirc		C-17
		\bullet			\bullet		\bullet	\bullet		\bigcirc	\bigcirc	\bullet	\bullet	\bullet				\bigcirc	\bullet	C-15
		-				-	\bullet	\bullet		0	\bigcirc	-	-	-				\bigcirc	-	C-15
			\bullet	\bullet			\bullet	\bullet		\bullet					\bullet	-				C-20
			\bullet		\bullet		\bullet	\bullet		\bigcirc	0	\bullet	\bullet	\bullet					\bullet	C-18
			\bullet			\bullet	\bullet	\bullet		0	0	-	\bullet	-					\bullet	C-18

O Available on request

Selection table for inductive multiple limit switches

Series RGBF... 12/16 mm, mechanical

- Plunger spacing 12 or 16 mm Upright housing according to DIN 43697
- Degree of protection IP 67 according to IEC 60529
- LED function display optional

Switching elements

- ES 502 E Snap-action switching contact $1 \mathrm{NC}+1$ NO
- ES 508 Slow-action switching contact 1 NC Θ
- ES 514 Snap-action switching contact 1 NC $\Theta+1$ NO

On the usage of safety switching elements, the dog distance (4.0.5 must be maintained to achieve the positively driven travel. The dogs must be positively mounted according to EN ISO 14119, i.e. riveted, welded or secured in some other way against becoming loose.

LED function display (optional)

Function displays are available for the following voltage ranges (see accessories page C-23):

- LE060
12 ... 60 V AC/DC
- LE110 110 V AC $\pm 15 \%$
- LE220 220 V AC $\pm 15 \%$

Series RGBF... mechanical
Plunger spacing 12 or 16 mm

Dimension drawing lllustration with chisel plunger; plunger type depending on version

> Stipulated dog distance for safety switching elements

Switching elements

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has been run-in with approx. 2,000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639. Special versions of roller plungers for high usage on request
3) For safety reasons, multiple limit switches with switching elements ES 508 and ES 514 are not available with ball plungers 4) Plunger type on request

n Number of plungers/proximity switches	Plunger/proximity switch spacing			
	$I_{1}=12$		$I_{1}=16$	
	I_{2}	Housing material	I_{2}	Housing material
2	70	Die-cast aluminum, anodized	70	Die-cast aluminum, anodized
3	80		90	
4	90		105	
5	105		120	
6	120		140	
8	140		170	

Series RGBF... 12/16 mm, inductive

Proximity switch spacing 12 or 16 mm
Upright housing according to DIN 43697

- Degree of protection IP 67 according to IEC 60529
LED function display

Rated operating distance

With 12 mm proximity switch spacing, the rated operating distance is 2 mm ; with 16 mm proximity switch distance it is 5 mm .

Mixed contact assembly

On request mixed assembly with electro-mechanical safety switching elements according to IEC 60947-5-1 is possible for 12 mm proximity switch spacing.

LED function display

$D C$ and $A C$ switching elements are equipped as standard with a function display on the switching element (yellow). The function display can be seen from the exterior.

Series RGBF... inductive
Proximity switch spacing 12 or 16 mm

Switching elements

Switching elements with 5 mm operating distance (16 mm proximity switch spacing) are supplied with two different oscillator frequencies to avoid mutual interference. Multiple limit switches must therefore be assembled alternately with these switching elements.

Further switching elements on request (see page C-28)

(plug connector on request)

Series SN... 12/16 mm, mechanical

Plunger spacing 12 or 16 mm
Upright housing, small flange

- Degree of protection IP 67 according to IEC 60529
- LED function display optional

Switching elements

- ES 502 E Snap-action switching contact $1 \mathrm{NC}+1$ NO
- ES 508 Slow-action switching contact 1 NC Θ
- ES 514 Snap-action switching contact 1 NC $\Theta+1$ NO

On the usage of safety switching elements, the dog distance (3.0.5) must be maintained to achieve the positively driven travel. The dogs must be positively mounted according to EN ISO 14119, i.e. riveted, welded or secured in some other way against becoming loose.

LED function display (optional)

Function displays are available for the following voltage ranges (see accessories page C-23):

- LEO24ge 24 V DC (for ES 514)
- LE060 12 ... 60 V AC/DC
- LE110 110 V AC $\pm 15 \%$
- LE220 220 V AC $\pm 15 \%$

Series SN... mechanical
Plunger spacing 12 or 16 mm

Dimension drawing lllustration with chisel plunger; plunger type depending on version

$$
\begin{aligned}
& \text { Ltipulated dog distance for } \\
& \text { safety switching elements }
\end{aligned}
$$

Switching elements

ES 502 E
$13-\square$
$14-$
21
22
Snap-action
switching contact

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has
2) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has
been run-in with approx. 2,000 operating cycles been run-in with approx. 2,000 operating cycles
3) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639. Special versions of roller plungers for high usage on request
4) For safety reasons, multiple limit switches with switching elements ES 508 and ES 514 are not available with ball plungers 4) Plunger type on request

n Number of plungers/proximity switches	Plunger/proximity switch spacing						Housing material
	$I_{1}=12$			$I_{1}=16$			
	I_{2}	I_{3}	I_{4}	I_{2}	I_{3}	I_{4}	
2	36	12	19	48	16	24	Die-cast aluminum, anod-
3	48		24	72			
4	60			84			
5	72			-	-	-	
6	84			-	-	-	

Series SN... 12/16 mm, inductive

Proximity switch spacing 12 or 16 mm
Upright housing, small flange
Degree of protection IP 67 according to IEC 60529

LED function display

Rated operating distance

With 12 mm proximity switch spacing, the rated operating distance is 2 mm ; with 16 mm proximity switch distance it is 5 mm .

Mixed contact assembly

On request mixed assembly with electro-mechanical safety switching elements according to IEC 60947-5-1 is possible for 12 mm proximity switch spacing.

LED function display

$D C$ and $A C$ switching elements are equipped as standard with a function display on the switching element (yellow). The function display can be seen from the exterior.

Series SN... inductive
Proximity switch spacing 12 or 16 mm

Dimension drawing

Switching elements

$$
\begin{gathered}
\text { DC NO + NC contacts, PNP } \\
781, l_{1}=12 \mathrm{~mm} \\
772, l_{1}=16 \mathrm{~mm}
\end{gathered}
$$

$$
\begin{gathered}
\text { DC NO + NC contacts, } \\
\text { NPN }
\end{gathered}
$$

$780, I_{1}=12 \mathrm{~mm}$

Switching elements with 5 mm operating distance (16 mm proximity switch spacing) are supplied with two different oscillator frequencies to avoid mutual interference. Multiple limit switches must therefore be assembled alternately with these switching elements.

Further switching elements on request (see page C-28)

Series

Number of plungers/proximity switches
Plunger type (only mechanical switches, e.g. $\mathbf{D}=$ chisel)

Plunger/proximity switch spacing
(12 or 16 mm)
Switching elements
(e.g. ES 508 or 777)

Visible LED (yellow) (on inductive switches)

LED function display (optional on
mechanical switches, e.g. 12 ...
$60 \mathrm{~V} \mathrm{AC} / \mathrm{DC}=060$)
LED color (red standard; others on request)

Cable entry M20 x 1.5
(plug connector on request)

Series SN... 8 mm, mechanical

> Plunger spacing 8 mm
Upright housing, without flange
Degree of protection IP 67 according to IEC 60529

Switching elements

- ES 552 Snap-action switching contact 1 changeover contact Standard switching element
- ES 614 Snap-action switching contact 1 changeover contact Suitable for switching low currents
(See technical data on the switching elements)

Series SN... mechanical
Plunger spacing 8 mm

Dimension drawing Illustration with chisel plunger; plunger type depending on version

Switching elements

Plunger types				
Operating point accuracy ${ }^{1)}$	± 0.02	± 0.05	± 0.03	mm
Approach speed, max. ${ }^{2 \prime}$	20	50	8	$\mathrm{m} / \mathrm{min}$

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 552 E has been run-in with approx. 2,000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639

\boldsymbol{n} Number of plungers	$\mathbf{I}_{\mathbf{1}}$	Plunger spacing $\mathbf{8 ~ m m}$ Cable entry	Housing material
2	34		
3	42	M16 $\times 1.5$	
4	50		Die-cast aluminum, anodized
5	58	M20 $\times 1.5$	
6	66		

Series GSBF... 12/16 mm, mechanical

Plunger spacing 12 or 16 mm Upright housing
Degree of protection IP 67 according to IEC 60529
LED function display optional

Switching elements

- ES 502 E Snap-action switching contact 1 NC + 1 NO
- ES 508 Slow-action switching contact 1 NC Θ
- ES 514 Snap-action switching contact

$$
1 \mathrm{NC} \Theta+1 \text { NO }
$$

On the usage of safety switching elements, the dog distance (4.0.5) must be maintained to achieve the positively driven travel. The dogs must be positively mounted according to EN ISO 14119, i.e. riveted, welded or secured in some other way against becoming loose.

LED function display (optional)

Function displays are available for the following voltage ranges (see accessories page C-23):

- LE060
12 ... 60 V AC/DC
- LE110 110 V AC $\pm 15 \%$
- LE220 220 V AC $\pm 15 \%$

Series GSBF... mechanical
Plunger spacing 12 or 16 mm

Dimension drawing lllustration with chisel plunger; plunger type depending on version

Stipulated dog distance for safety switching elements

Switching elements

Approach speed max. ${ }^{21}$	40
1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has	

2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639
3) For safety reasons, multiple limit switches with switching elements ES 508 and ES 514 are not available with ball plungers 4) Plunger type on request

	Plunger spacing		Housing material
$\stackrel{n}{n}$ Number of plungers	$I_{1}=12$	$I_{1}=16$ I_{2}	
2	70	70	Die-cast aluminum, anodized
3	70	82	
4	82	96	
5	96	112	
6	112	130	
8	130	-	

Series GSBF... 8 mm, mechanical

Plunger spacing 8 mm

Upright housing
Degree of protection IP 67 according to IEC 60529

Switching elements

ES 552 Snap-action switching contact 1 changeover contact Standard switching element
ES 614 Snap-action switching contact 1 changeover contact Suitable for switching low currents
(See technical data on the switching elements)

Series GSBF... mechanical
Plunger spacing 8 mm

Dimension drawing lllustration with chisel plunger; plunger type depending on version

Switching elements

	Plunger types	R	R	R
	Chisel			

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 552 E has
been run-in with approx. 2,000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639
3) Plunger type on request

Series GLBF... 12/16 mm, mechanical (on request)

Plunger spacing 12 or 16 mm
Horizontal housing

- Degree of protection IP 67 according to IEC 60529
- LED function display optional

Switching elements

- ES 502 E Snap-action switching contact 1 NC + 1 NO
- ES 508 Slow-action switching contact 1 NC Θ
- ES 514 Snap-action switching contact 1 NC $\Theta+1$ NO

On the usage of safety switching elements, the dog distance (4.0.5) must be maintained to achieve the positively driven travel. The dogs must be positively mounted according to EN ISO 14119, i.e. riveted, welded or secured in some other way against becoming loose.

LED function display (optional)

Function displays are available for the following voltage ranges (see accessories page C-23):

- LE060
12 ... 60 V AC/DC
- LE110 110 V AC $\pm 15 \%$
- LE220 220 V AC $\pm 15 \%$

Series GLBF... mechanical
Plunger spacing 12 or 16 mm
Dimension drawing llustration with chisel plunger; plunger type depending on version

Switching elements

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has been run-in with approx. 2,000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639
3) For safety reasons, multiple limit switches with switching elements ES 508 and ES 514 are not available with ball plungers 4) Plunger type on request

n	Plunger/proximity switch spacing								Housing material
Number of plungers/	$I_{1}=12$				$I_{1}=16$				
proximity switches	I_{2}	I_{3}	I_{4}	Cable entry	I_{2}	I_{3}	I_{4}	Cable entry	
2	84	66	52	$\begin{gathered} \text { A } \\ \mathrm{M} 25 \times 1.5 \end{gathered}$	84	66	52	$\begin{gathered} \text { A } \\ \text { M } 25 \times 1.5 \end{gathered}$	Sand-cast aluminum, anodized
3	84	66	52		100	82	68		
4	100	82	68		114	98	84	$\begin{gathered} B+C \\ \mathrm{M} 25 \times 1.5 \end{gathered}$	
5	114	98	84	$\begin{gathered} B+C \\ M 25 \times 1.5 \end{gathered}$	132	114	100		
6	132	114	100		148	130	116		

Series GLBF... 8 mm, mechanical

Plunger spacing 8 mm
Horizontal housing
Degree of protection IP 67 according to IEC 60529

Switching elements

- ES 552 Snap-action switching contact 1 changeover contact Standard switching element (See technical data on the switching elements)

Series GLBF... mechanical
Plunger spacing 8 mm

Dimension drawing lllustration with chisel plunger; plunger type depending on version

Switching elements

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 552 E has been run-in with approx. 2,000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639 3) Plunger type on request

\boldsymbol{n}	Plunger/proximity switch spacing $\mathbf{8} \mathbf{~ m m}$			
Number of plungers/proximity switches	$\boldsymbol{I}_{\mathbf{1}}$	$\boldsymbol{I}_{\mathbf{2}}$	Housing material	
	64	50		
3	80	66	39	Sand-cast aluminum, anodized
4	80	66	55	

Ordering code

Series
Number of plungers/proximity switches

Plunger type (only mechanical switches, e.g. $\mathbf{D}=$ chisel)

Plunger/proximity switch spacing (8 mm)

Switching element ES 552

Mechanical

Cable entry M20 $\times 1.5$

Series RGBF...AM 12 mm, mechanical

- With exterior diaphragm

Plunger spacing 12 mm
Upright housing
according to DIN 43697

- Degree of protection IP 67 according to IEC 60529

Exterior diaphragm

The exterior diaphragm protects the plunger guide against the entry of very fine dust (dust from grinding, casting, glass, etc.) and prevents the plunger from seizing. At the same time, plunger sticking, caused by resinous lubricating coolants, can be prevented with this exterior diaphragm version.

Switching elements

ES 502 E Snap-action switching contact 1 NC + 1 NO
ES 514 Snap-action switching contact $1 \mathrm{NC} \Theta+1$ NO

LED function display possible on request.

Series RGBF... AM mechanical

Plunger spacing 12 mm

Dimension drawing lllustration with chisel plunger; plunger type depending on version

Cable

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has been run-in with approx. 2,000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639

n Number of plungers	Plunger spacing 12 mm	
	1	Housing material
2	70	Die-cast aluminum, anodized
3	80	
4	90	
5	105	
6	120	
8	140	
Plunger type	Number of plungers	
		Order no./item
	2	082325 RGBF 02 D 12-502 AM -M
	3	$\begin{gathered} 088365 \\ \text { RGBF 03D } 12-502 \text { AM -M } \\ \hline \end{gathered}$
	4	$\begin{gathered} 082326 \\ \text { RGBF } 04 \text { D } 12-502 \mathrm{AM}-\mathrm{M} \\ \hline \end{gathered}$
	5	088366 RGBF 05 D $12-502$ AM -M
	6	$\begin{gathered} 087097 \\ \text { RGBF } 06 \text { D 12-502 AM -M } \\ \hline \end{gathered}$
	2	$\begin{gathered} 087098 \\ \text { RGBF 02 R 12-502 AM -M } \\ \hline \end{gathered}$
	3	$\begin{gathered} 088364 \\ \text { RGBF 03 R } 12-502 \text { AM -M } \\ \hline \end{gathered}$
	4	$\begin{gathered} 082327 \\ \text { RGBF } 04 \mathrm{R} \text { 12-502 AM -M } \\ \hline \end{gathered}$
	5	$\begin{gathered} 087099 \\ \text { RGBF } 05 \text { R } 12-502 \mathrm{AM}-\mathrm{M} \\ \hline \end{gathered}$
	6	$\begin{gathered} \mathbf{0 8 7 1 0 0} \\ \text { RGBF } 06 \text { R } 12-502 \mathrm{AM}-\mathrm{M} \\ \hline \end{gathered}$

[^5]
Series SN...AM 12 mm, mechanical

With exterior diaphragm
Plunger spacing 12 mm
Upright housing, small flange
Degree of protection IP 67 according to IEC 60529

Exterior diaphragm

The exterior diaphragm protects the plunger guide against the entry of very fine dust (dust from grinding, casting, glass, etc.) and prevents the plunger from seizing. At the same time, plunger sticking, caused by resinous lubricating coolants, can be prevented with this exterior diaphragm version.

Switching elements

- ES 502 E Snap-action switching contact 1 NC + 1 NO

LED function display possible on request.

Series SN...AM mechanical

Plunger spacing 12 mm
Dimension drawing llustration with chisel plunger; plunger type depending on version

Switching elements

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has been run-in with approx. 2,000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639

Number of plungers	Plunger spacing 12 mm		
	I_{1}	I_{2}	Housing material
2	36	19	Die-cast aluminum, anodized
3	48	24	
4	60		
5	72		
6	84		
Plunger type	Number of plungers		Order no./item
	2		$\begin{gathered} 086584 \\ \text { SN } 02 \text { D } 12-502 \text { AM -M } \\ \hline \end{gathered}$
Chisel plunger	3		$\begin{gathered} 086585 \\ \text { SN } 03 \mathrm{D} 12-502 \mathrm{AM}-\mathrm{M} \end{gathered}$
	4		$\begin{gathered} 086586 \\ \text { SN } 04 \mathrm{D} 12-502 \mathrm{AM}-\mathrm{M} \end{gathered}$
	5		$\begin{gathered} 088752 \\ \text { SN } 05 \mathrm{D} \text { 12-502 AM -M } \\ \hline \end{gathered}$
	6		$\begin{gathered} 088753 \\ \text { SN 06D 12-502 AM -M } \\ \hline \end{gathered}$
	2		$\begin{gathered} \mathbf{0 7 9 2 8 9} \\ \text { SN } 02 \mathrm{R} 12-502 \text { AM -M } \end{gathered}$
	3		$\begin{gathered} \mathbf{0 8 6 5 8 7} \\ \text { SN } 03 \mathrm{R} 12-502 \text { AM -M } \end{gathered}$
	4		$\begin{gathered} \mathbf{0 8 6 5 8 8} \\ \text { SN } 04 \text { R } 12-502 \text { AM -M } \end{gathered}$
	5		$\mathbf{0 8 8 7 6 5}$ SN 05 R 12-502 AM -M
	6		$\mathbf{0 8 8 7 6 6}$ SN 06 R 12-502 AM -M

Accessories for mechanical multiple limit switches

- LED function display

LED function display

Three versions in various voltage ranges are available in the standard colors red, green and yellow. The built-in electronic regulation (LE060 only) ensures that the luminosity remains constant, independent of the voltage applied.

LED function display

Figure

Ordering table

Designation	Operating voltage [V]	Color	Order no./item
LED function display ${ }^{1 /}$	AC/DC 12-60	Red	035495 LE 060 rt
		Green	$\begin{aligned} & 035496 \\ & \text { LE } 060 \mathrm{gr} \\ & \hline \end{aligned}$
		Yellow	$\begin{gathered} 035497 \\ \text { LE } 060 \text { ge } \end{gathered}$
	AC $110 \pm 15 \%$	Red	$\begin{aligned} & 045579 \\ & \text { LE } 110 \mathrm{rt} \\ & \hline \end{aligned}$
	AC $220 \pm 15 \%$	Red	045582 LE 220 rt
		Yellow	$\begin{gathered} 045584 \\ \text { LE } 220 \text { ge } \\ \hline \end{gathered}$

1) If color not stated, red will be supplied as standard

Replacement mechanical switching

 elements
Replacement switching elements

Replacement switching elements for multiple limit switches with 8, 12 and 16 mm plunger spacing.

The safety switching elements ES 508 and ES 514 are not allowed to be replaced for safety reasons and are therefore not available as spare parts. In safety circuits, the entire multiple limit switch must be replaced in case of damage or wear. Repairs are to be made only by the manufacturer.

Replacement switching elements

Figure

ES 502 E

ES 552/ES 614

Ordering table

Designation	Order no./item
Replacement switching elements	$\begin{aligned} & 010387 \\ & \text { ES } 502 \text { E } \end{aligned}$
	$\begin{gathered} 099513 \\ \text { ES } 552 \end{gathered}$
	$\begin{gathered} 099507 \\ \text { ES } 614 \\ \hline \end{gathered}$

Accessories for inductive multiple limit switches

Replacement inductive switching elements

The switching elements used for all inductive multiple limit switches supplied are available as spare parts

Ordering table

Designation	Bridge	Function	Order no.
ES777	12 mm	NO contact/PNP	008401
ES781	12 mm	NO + NC contacts/PNP	031535
ES780	12 mm	NO + NC contacts/NPN	031534
ES779 ${ }^{11}$	16 mm	NO contact/PNP	008470
ES779/2 ${ }^{11}$	16 mm	NO contact/PNP	036731
ES772 ${ }^{11}$	16 mm	NO + NC contacts/PNP	053674
ES772/2 ${ }^{1)}$	16 mm	NO + NC contacts/PNP	053677

1) Switching elements with 5 mm operating distance (proximity switch spacing 16 mm) are supplied with two different oscillator frequencies to avoid mutual interference. Multiple limit switches must therefore be assembled alternately with these switching elements.

Cable glands

```
M16 x 1.5
M20 x 1.5
M25 x 1.5
```


Cable glands

Cable glands

Suitable for various cable diameters. Versions in metal.

Ordering table

Thread	Version	Order no./item
M16 x 1.5	Cable diameter $4-6.5 \mathrm{~mm}$	$\begin{gathered} 086328 \\ \text { EKVM16/04 } \end{gathered}$
	Cable diameter $5.8 \mathrm{~mm}$	$\begin{gathered} 086329 \\ \text { EKVM16/05 } \end{gathered}$
	Cable diameter $6.5-9.5 \mathrm{~mm}$	$\begin{gathered} 086330 \\ \text { EKVM16/06 } \end{gathered}$
M20 x 1.5	$\begin{gathered} \text { Cable diameter } \\ 6.5-9.5 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 077683 \\ \text { EKVM20/06 } \end{gathered}$
	$\begin{gathered} \text { Cable diameter } \\ 9-13 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 077684 \\ \text { EKVM20/09 } \end{gathered}$
M25 x 1.5	Cable diameter 9.13 mm	$\begin{gathered} 086334 \\ \text { EKVM25/09 } \end{gathered}$
	Cable diameter $11.5-15.5 \mathrm{~mm}$	$\begin{gathered} 086335 \\ \text { EKVM25/11 } \end{gathered}$

Multiple limit switches, mechanical

Travel diagram	Snap-action switching contact according to DIN 43695 with one NO and one NC contact. Double gap, electrically
ES 502 E	isolated switching contacts, silver contact material, electro-gold plated. Screw terminal with self-raising clamp washers.

Travel diagram

ES 508

Slow-action switching contact with one positively driven contact. Double gap, silver contact material, electro-gold plated.
Screw terminal with self-raising clamp washers.

Travel diagram	Magnetic snap-action switching contact with one positively driven contact and one NO contact. Double gap, electrically
ES 514	isolated switching contacts, silver contact material, electro-gold plated. Screw terminal with self-raising clamp washers.

Travel diagram	Snap-action switching contact with one changeover contact. SS 552
Siver contact material, electro-gold plated.	
Screw terminal.	

Travel diagram Snap-action switching contact with one ES 614 changeover contact.
 Silver contract material, electro-gold plated (gold cross cut contact). Screw terminal.

Contacts open

Magnetic snap-action switching contact with one positively driven contact and one NO contact. Double gap, electrically isolated switching contacts, silver contact material, electro-gold plated. Screw terminal with self-raising clamp washers.

On series GSBF.../GLBF.../SN.../SB... Plunger spacing 8 mm		
Contacts closed Contacts open	\square Contacts closed Contacts open	

Technical data

 EUCHNER
Multiple limit switches, inductive

1) Switching elements with 5 mm operating distance (proximity switch spacing 16 mm) are supplied with two different oscillator frequencies to avoid mutual interference. Multiple limit switches must therefore be assembled alternately with these switching elements.
When ordering single elements, please prefix the part number with ES. E.g. switching element ES 781

Wiring diagrams

Selection table for trip rails

- Available

Trip rails with $8 \mathrm{~mm}, 12 \mathrm{~mm}$ or 16 mm spacing

Series UFA...

Slot spacing 8 mm , aluminum

Dimension drawing

Minimum order 2,010 mm, 1 bar

Series ULA... according to DIN 69638 type A Slot spacing 16 mm , aluminum

Dimension drawing

\square
(

Series UL... can be placed in a row Slot spacing 12 mm , aluminum

Dimension a [mm]	24	36	48
Number of slots	2	3	4

Preferable lengths $1,000,2,000,3,000$ and $4,000 \mathrm{~mm}$ (preferable length corresponds to minimum order)

Series UF...

Slot spacing 8 mm , cast iron

Dimension a [mm]	44	52	60	68	76	92
Number of slots	2	3	4	5	6	8
Dimension a [mm]	108	124	140	156	172	188
Number of slots	10	12	14	16	18	20

Length max. 1,000 mm
Gray figures on request
Series UF... according to DIN 69638 type A Slot spacing 12 mm , cast iron

Dimension a [mm]	50	62	74	86	98	122
Number of slots	2	3	4	5	6	8
Dimension a $[\mathrm{mm}]$	146	170	194	218		
Number of slots	10	12	14	16		
Length max. $1,000 \mathrm{~mm}$ Gray figures on request						

Series UF... according to DIN 69638 type A Slot spacing 16 mm , cast iron

Dimension a $[\mathrm{mm}]$	54	70	86	102	118	150
Number of slots	2	3	4	5	6	8
Dimension $\boldsymbol{a}[\mathrm{mm}]$	182	214				
Number of slots	10	12				
Length max. $1,000 \mathrm{~mm}$ Gray figures on request						

Ordering code

Length [mm] (note minimum order/preferable length)

Trip dogs for trip rails with $8 \mathrm{~mm}, 12 \mathrm{~mm}$ or 16 mm spacing

Type of actuation mechanical

Series U8...

For 8 mm slot spacing, hardened, ground steel
Dimension drawing

Series U1216... according to DIN 69639 type UA/UB For 12 or 16 mm slot spacing, hardened, ground steel

Type of actuation inductive

Series UX8...

For 8 mm slot spacing, black painted steel

8 mm
$\rightarrow \quad-4$

$\mathbf{I}_{\mathbf{1}}$	Figure
6	1
10	1
16	1
25	2
40	2
63	2
100	2

Series UX1216

For 12 or 16 mm slot spacing, black painted steel

Ordering code

\square
Series

Length I_{1}

Special trip dogs for trip rails with 12 mm or 16 mm spacing

Type of actuation mechanical

- Safety dog

Fine adjustment dogs
Safety dog UZ
For limit switches with safety function the safety dog must be positively mounted

Fine adjustment dog UE

The fine adjustment dog UE1216-4 can be mounted in all U-trip rails with 12 or 16 mm slot spacing. The fine adjustment is made using a self-locking hexagon socket head screw

Safety dog UZ for $12 / 16 \mathrm{~mm}$ slot spacing, hardened, ground steel

Dimension drawing UZ1216-50

(

Fine adjustment dog UE for $12 / 16 \mathrm{~mm}$ slot spacing, hardened, ground steel

Dimension drawing UE1216-4

Adjustment range [mm]	4
Graduation $>1 \mathrm{~K}[\mathrm{~mm}]$	0.02

Ordering table

Designation	Use	Order no./item
Safety dog UZ	For trip rails ULA/UL/UF	022234
Fine adjustment dog UE	For trip rails ULAM/UL/UF	UZ1216-50
	12 or 16 mm	UE13316

Glossary

Rated operating current I_{e}

The rated operating current is the nominal current that can load the inductive switching element in continuous operation.

Rated operating distance \mathbf{S}_{n}

The rated operating distance is a general variable used for measurement of operating distances. It does not take into account either the production tolerances or changes caused by external effects such as voltage and temperature.

Operating voltage U_{B}

The operating voltage defines the voltage range in which the inductive switching element functions reliably. The specified values represent limits without any tolerances. The values can be obtained by referring to the technical data for the switching element. In the case of two-wire switching elements, this is applicable only in series connection with the load.

Wire break safety

The EUCHNER proximity switches with wire break safety are designed such that on a wire break on any connection, the switch does not output a spurious signal.

Switch-on current I_{k}

The switch-on current is the maximum current that can flow in an AC 2-wire switching element for a particular period at the moment it is switched on. The details in the technical data are valid for 20 ms .

Assured operating distance S_{a}

The assured operating distance is the operating distance at which correct operation of the inductive switching element is guaranteed within the permissible operating conditions (temperature and voltage).
The actuation distance lies between 0 and 81% of the rated operating distance S_{n}.

Hysteresis H

The hysteresis is the difference in distance terms between the ON point as the test plate approaches and the OFF point as it moves away from the active face of the inductive switching element.

Minimum operating current I_{m}

The minimum operating current is the minimum current required for the function of a 2-wire switching element in active energized condition.

Short circuit and overload protection

The inductive switching elements are designed so that short circuits cannot damage the outputs. Pulsed short circuit protection is used.
This means that the output transistor is switched off and on again in quick succession in the event of overloading or a short circuit. In this way, it is possible to establish whether the fault is still present or has been rectified.

Off-state current I_{r}

The off-state current is the current that flows in the load circuit of an inductive DC 2-wire switching element in the non-conducting condition. In practical terms, this current has to be taken into account only for 2-wire switching elements.

Switching elements

Switching elements are used in mechanical multiple limit switches. Switching elements are available with a normally closed function, a normally open function and as positively driven contacts.

Switching frequency f

The switching frequency is the maximum possible number of switching operations per second. This is determined according to IEC 60947-5-2, and is based on a mark-space ratio of 1:2. The switching frequency is a switch-specific variable and can be obtained by referring to the technical data for the switching element.

Slow-action contact elements

A slow-action contact element is characterized by the opening of the switching contact as a function of the speed at which the plunger is moved.

Degree of protection

The degree of protection is defined according to EN 60529-1 and is given as an IP. "IP" is followed by two digits; the first digit gives the degree of protection against the penetration of solid foreign bodies and the second digit gives the degree of protection against the penetration of liquids.

Voltage drop \mathbf{U}_{d}

The voltage drop is measured across the active output of the inductive switching element when the output is in the "active energized" condition and when the rated operating current I_{e} flows.

Snap-action contact elements

On snap-action contact elements the switching element jumps to the other switch state from a defined plunger position. The movement of the switching contact is independent of the speed at which the actuator is moved. Snap-action contact elements typically have hysteresis.

Transient protection

EUCHNER proximity switches are protected against interference caused by the occurrence of inductive voltage peaks in accordance with IEC 801-4. Testing is performed in accordance with the stipulations in DIN VDE 0660, Part 208 and IEC 947-5-2.

Ambient temperature T

The ambient temperature is the temperature range in which the reliable operation of the inductive switching element is guaranteed. This range is between - 25 and $+70^{\circ} \mathrm{C}$.

Reverse polarity protection

Protection against reverse polarization of the operating voltage.

Repeat accuracy \mathbf{R}

The repeat accuracy is the reproducibility of the real operating distance s_{r} for two switching actions in succession within 8 hours at an operating temperature of $23 \pm 5^{\circ} \mathrm{C}$ and an operating voltage of $\mathrm{U}_{\mathrm{B}} \pm 5 \%$.

International

Austria
EUCHNER GmbH
Aumühlweg 17-19/Halle 10
2544 Leobersdorf
Tel. +43720010200
Fax +43 720010 200-20
info@euchner.at

Benelux

EUCHNER (BENELUX) BV
Visschersbuurt 23
3356 AE Papendrecht
Tel. +31 78 615-4766
Fax +31 78 615-4311
info@euchner.nl

Brazil

EUCHNER Com.Comp.
Eletronicos Ltda.
Av. Prof. Luiz Ignácio Anhaia Mello, no. 4387
Vila Graciosa
São Paulo - SP - Brasil
CEP 03295-000
Tel. +55 1129182200
Fax +55 1123010613
euchner@euchner.com.br

Canada

EUCHNER Canada Inc.
2105 Fasan Drive
Oldcastle, ON NOR 1 LO
Tel. $\quad+1519$ 800-8397
Fax +1519737-0314
sales@euchner.ca

China

EUCHNER (Shanghai)
Trading Co., Ltd.
No. 15 building,
No. 68 Zhongchuang Road,
Songijang
Shanghai, 201613, P.R.C
Tel. +86 21 5774-7090
Fax +86 21 5774-7599
info@euchner.com.cn

Czech Republic

EUCHNER electric s.r.o.
Trnkova 3069/117h
62800 Brno
Tel. +420 533 443-150
Fax +420533 443-153
info@euchner.cz

Denmark

Duelco A/S
Systemvej 8-10
9200 Aalborg SV
Tel. +45 70101007
Fax +4570101008
info@duelco.dk
Finland
Sähkölehto $0 y$
Holkkitie 14
00880 Helsinki
Tel. +358 97746420
office@sahkolehto.fi

France

EUCHNER France S.A.R.L.
Parc d'Affaires des Bellevues
Allée Rosa Luxembourg
Bâtiment le Colorado
95610 ERAGNY sur OISE
Tel. +33 1 3909-9090
Fax +331 3909-9099
info@euchner.fr

Hungary

EUCHNER Magyarország Kft.
FSD Park 2.
2045 Törökbálint
Tel. +3619190855
Fax +3619190857
info@euchner.hu

India

EUCHNER (India) Pvt. Ltd.
401, Bremen Business Center,
City Survey No. 2562,
University Road
Aundh, Pune - 411007
Tel. +91 2064016384
Fax +91 2025885148
info@euchner.in
Israel
Ilan \& Gavish Automation Service Ltd.
26 Shenkar St. Qiryat Arie 49513
P.O. Box 10118

Petach Tikva 49001
Tel. +972 39221824
Fax +972 39240761
mail@ilan-gavish.com

taly

TRITECNICA SpA
Viale Lazio 26
20135 Milano
Tel. +39 02541941
Fax +39 0255010474
info@tritecnica.it

Japan
EUCHNER Co., Ltd.
1662-3 Komakiharashinden Komaki-shi, Aichi-ken 485-0012, Japan Tel +815 56842015
Fax +81568420159 info@euchner.jp

Korea

EUCHNER Korea Co., Ltd.
115 Gasan Digital 2 - Ro
(Gasan-dong, Daeryung
Technotown 3rd Rm 810)
153-803 Kumchon-Gu, Seoul
Tel. +82 2 2107-3500 Fax +82 2 2107-3999
info@euchner.co.kr

Mexico

EUCHNER México S de RL de CV
Conjunto Industrial PK Co.
Carretera Estatal 431 km. 1+300
Ejido El Colorado, El Marqués
76246 Querétaro, México
Tel. +52 4424021485
Fax +524424021486
info@euchner.mx

Poland

EUCHNER Sp. z o.o
Krasińskiego 29
40-019 Katowice
Tel. +48 322522009
Fax +48 322522013
info@euchner.pl

Portugal

PAM Servicos Tecnicos Industriais Lda
Rua de Timor - Pavilhao 2A
Zona Industrial da Abelheira
4785-123 Trofa
Tel. +351 252418431
Fax + 351252494739
pam@mail.telepac.pt
Republic of South Africa
RUBICON
ELECTRICAL DISTRIBUTORS
4 Reith Street, Sidwell
6061 Port Elizabeth
Tel. +2741 451-4359
Fax +2741 451-1296
sales@rubiconelectrical.com

Germany

Augsburg
EUCHNER GmbH + Co. KG Ingenieur- und Vertriebsbüro Julius-Spokojny-Weg 8 86153 Augsburg
Tel. +4982156786540 Fax +49 82156786541 peter.klopfer@euchner.de

Berlin

EUCHNER GmbH + Co. KG Ingenieur- und Vertriebsbüro Ulmenstraße 115a
12621 Berlin
Tel. +49 3050508214
Fax +493056582139
alexander.walz@euchner.de

Chemnitz
EUCHNER GmbH + Co. KG
Ingenieur- und Vertriebsbüro
Am Vogelherd 2
09627 Bobritzsch-Hilbersdorf
Tel. +49 37325906000
Fax +4937325906004
jens.zehrtner@euchner.de

Düsseldorf

EUCHNER GmbH + Co. KG
Ingenieur- und Vertriebsbüro
Tippgarten 3
59427 Unna
Tel. +49 23089337284
Fax +4923089337285
christian.schimke@euchner.de

Essen

Thomas Kreißl
fördern - steuern - regeln
Hackenberghang 8a
45133 Essen
Tel. +49 201 84266-0
Fax +49 201 84266-66
info@kreissl-essen.de

Freiburg

EUCHNER GmbH + Co. KG Ingenieur- und Vertriebsbüro Steige 5
79206 Breisach
Tel. +49 7664403833 Fax +49 7664403834 peter.seifert@euchner.de

Lübeck

EUCHNER GmbH + Co. KG Ingenieur- und Vertriebsbüro Am Stadtrand 13
23556 Lübeck
Tel. +4945188048371
Fax +49 45188184364 martin.pape@euchner.de

Nürnberg

EUCHNER GmbH + Co. KG Ingenieur- und Vertriebsbüro Steiner Straße 22a 90522 Oberasbach Tel. +49 9116693829 Tel. +49 9116693829 Fax +49 9116696722
ralf.paulus@euchner.de

Stuttgart

EUCHNER GmbH + Co. KG
Ingenieur- und Vertriebsbüro
Kohlhammerstraße 16
70771 Leinfelden-Echterdingen
Tel. +497117597-0
Fax +49 $7117597-303$
oliver.laier@euchner.de
uwe.kupka@euchner.de

Wiesbaden

EUCHNER GmbH + Co. KG
Ingenieur- und Vertriebsbüro
Adolfsallee 3
65185 Wiesbaden
Tel. +4961198817644
Fax +4961198895071
giancarlo.pasquesi@euchner.de

Support hotline

You have technical questions about our products or how they can be used? For further questions please contact your local sales representative.

Comprehensive download area
You are looking for more information about our products?
You can simply and quickly download operating instructions, CAD or ePLAN data and accompanying software for our products at www.euchner.com.

Customer-specific solutions
You need a specific solution or have a special requirement?
Please contact us. We can manufacture your custom product even in small quantities.

EUCHNER near you
You are looking for a contact at your location? Along with the headquarters in Leinfel-den-Echterdingen, the worldwide sales network includes 18 subsidiaries and numerous representatives in Germany and abroad - you will definitely also find us near you.

EUCHNER GmbH + Co. KG

Kohlhammerstraße 16
70771 Leinfelden-Echterdingen
Germany
Tel. +49 711 7597-0
Fax +49 711753316
info@euchner.de
www.euchner.com

EUCHNER

More than safety.

[^0]: 1) A snap-action contact element has a switching contact that opens and closes independently of the approach speed during actuation.
 2) A slow-action contact element has a switching contact that opens and closes depending on the approach speed during actuation.
[^1]: 4) CCC approval only for switching element ES553
[^2]: Other cable lengths on request. Output NPN NO + NC on request.

[^3]: 1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has been run in with approx. 2,000 operating cycles.
[^4]: Ordering example: Position switch with safety function NZ, cable entry 1,
 roller plunger with plastic roller RG, snap-action switching element 511,
 function display L060 10-60 V, metric thread M20×1.5 M
 NZ1RG-511L060-M

[^5]: For technical data see page C-26

